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ABSTRACT 

Pervious concrete has been used for many years in the southern United States but 

only recently have stormwater mandates implemented by the United States (U.S.) 

Environmental Protection Agency (EPA) created interest for more wide-spread installations, 

especially in freeze-thaw climates. Validation of the freeze-thaw durability of pervious 

concrete under the most extreme conditions created an opportunity to explore many 

additional aspects of pervious concrete and to improve durability through additional mixture 

characterization and new construction practices. While the material components are similar 

to conventional concrete, the idiosyncratic behavior of pervious concrete requires revaluating 

material effects and relationships. Many different factors influence the performance of 

conventional concrete and many different factors also affect pervious concrete, although 

limited data exist to support observed and expected responses.  

The most crucial factors include the specific effect on freeze-thaw durability caused 

by the coarse aggregate type. Since the volume of paste in a pervious concrete system is 

much less than traditional concrete and exposure conditions much more severe, aggregate 

durability criteria must be determined for this specific application. The more extreme 

exposure conditions also require investigating the effect of air entrainment on the concrete 

mortar. Air entrainment improves freeze-thaw durability in conventional concrete, but to date 

has yet to be evaluated in pervious concrete. In addition to mixture properties, construction 

practices must be modified to suit pervious concrete. While the workability of conventional 

concrete can be simply checked using a standard slump cone, no method currently exists to 

determine the workability of pervious concrete. However, workability of pervious concrete 

influences the ease of placement and density, which also controls the yield and ultimate 

durability. Determining pervious concrete workability will allow more consistency between 

placements and help quantify the effect various mixture components have on the fresh 

mixture behavior. Due to it’s very low water-to-cement ratio (~0.30) curing of pervious 

concrete is particularly important. Pervious concrete is currently cured under plastic instead 

of using a conventional curing compound. No research has previously been performed to 

evaluate the effect various common curing methods have on strength and durability. By 
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studying the important issues, consistency and durability can be improved and baseline 

values established for future research. 

This dissertation includes a selection of papers encompassing a variety of important 

aspects in pervious concrete research, all to improve pervious concrete durability. The papers 

include 1) The effect of aggregate type on the freeze-thaw durability of pervious concrete, 2) 

A novel approach to characterize entrained air content in pervious concrete, 3) Effect of 

curing regime on pervious concrete abrasion resistance, and 4) Evaluation of pervious 

concrete workability using gyratory compaction. The results show that freeze-thaw durability 

of pervious concrete is controlled by the aggregate absorption and specific gravity. Air 

entrainment can be quantified in pervious concrete and also used to improve workability and 

freeze-thaw durability. Workability can be characterized by two components, initial 

workability and resistance to additional compaction. Workability can be determined using a 

low-pressure gyratory testing apparatus and results show that increased binder amount 

influences properties more than increased water content. Lastly, for samples cured in the 

field using different methods, samples cured under plastic had the highest flexural strength 

and abrasion resistance. Curing compounds also improved strength and abrasion resistance 

over no curing method.  

From the results, highest priority recommendations for future research include 

development of standardized testing methods and standardized mixture proportioning 

methods. Strength and durability will be most significantly affected by improving the paste to 

aggregate bond strength, which will more effectively utilize the coarse aggregate strength. 

The basic properties established herein along with future research will allow pervious 

concrete to be utilized not only for parking areas but also successfully on high traffic volume 

roadways for improved safety and functionality. 
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CHAPTER 1. INTRODUCTION 

Introduction 

The socio-economic climate in the United States, and around the world, is changing. 

Engineers must consider not only the economics of a project, but now more than ever, 

consider the impact that projects will have on the human and natural environment. Pervious 

concrete has existed, in one form or another, for many years, but only recently have 

environmental regulations and stormwater treatment costs allowed its true consideration in 

engineering designs. Pervious concrete research at Iowa State University (ISU) began in 

2004 coinciding with an increase in interest spurred by the United States (U.S.) 

Environmental Protection Agency (EPA) implementing the National Pollutant Discharge 

Elimination System (NPDES) Phase II requirements for stormwater improvements to smaller 

municipalities and construction sites (U.S. Gov. 2004). Consequently, the research findings 

for cold weather pervious concrete were well-timed as many engineers, both public and 

private, began to explore the changing world of engineering designs evaluated through an 

environmental lens. Validation of the freeze-thaw durability of pervious concrete under the 

most extreme conditions created an opportunity to explore many other aspects of pervious 

concrete and to improve durability through additional mixture characterization and new 

construction practices through a comprehensive research project (Schaefer et al. 2006). 

Based on the laboratory results; a fully-instrumented parking lot was constructed at ISU to 

allow quantification of the benefits provided by a pervious concrete system (Jones 2006). 

This dissertation includes a selection of papers encompassing a variety of different aspects in 

pervious concrete research all with the ultimate goal of improving the resulting quality of 

pervious concrete placements. 

Problem Statement 

 The majority of pervious concrete installations are located in areas of the U.S. which 

do not experience freeze-thaw cycling and have otherwise benign environmental conditions. 

Unfortunately, pavement durability failures in these locations, while not widespread, are 

common. Failure is most often manifested by excessive raveling creating surface rutting and 
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loose particles, which can reduce permeability. The prevailing opinion is that if these 

pavements can readily fail in warm climates, failure is almost assured in harsh freeze-thaw 

conditions. Since the field of pervious concrete is characterized by a relatively large number 

of placements with little to no research defining basic material properties and responses, 

basic research must first identify significant parameters and establish baseline properties for 

subsequent testing. Once the general properties are better understood, then long-term 

durability will be improved. Some general areas which influence long-term durability are: 

Important Mixture Proportioning Factors 

 Coarse aggregate comprises the largest fraction of material in pervious concrete. The 

increased exposure conditions caused by the reduced mortar cover may require a 

more durable aggregate type.  

 For similar-sized aggregate particles, a crushed material has more surface area than a 

rounded particle. Since workability of pervious concrete occurs by mortar lubrication 

between coarse aggregate particles and by aggregate to aggregate contact, a mixture 

with high aggregate angularity will have reduced workability compared to a smooth 

aggregate mixture. 

 Pervious concrete consists of aggregate particles covered by mortar joined by small 

contact areas. Load is transferred through the mortar to the aggregate and to another 

particle and the strength is significantly influenced by mortar to aggregate bond. 

Angular aggregate with rough texture has better bond characteristics than smooth 

aggregate.  

 Aggregate gradation must optimize void space to allow for the addition of cement 

paste, and concrete density to maintain permeability. But also have sufficient strength 

for the required application. Additional sand creates a thicker mortar layer and higher 

strength but reduces void space and permeability. 

 Similar to aggregate gradation, sufficient cementitious binder must be included to 

properly coat the aggregate particles and transfer load, but optimize the concrete 

strength with permeability and workability. 
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 Concrete performance is often improved by the replacement of cement with 

supplementary cementitious materials (SCMs). To improve the sustainability 

component by using waste materials and potentially durability by reducing paste 

permeability, a blend of SCMs should be used in pervious concrete mixtures. 

 Adding water to concrete can improve workability, but reduces performance. A 

balance must be achieved in pervious concrete between enough water for workability 

and compaction and too much water and can cause the paste to drain from the 

aggregate surface. 

 Chemical admixtures stabilize the microscopic air system of concrete, improve 

workability at low water contents, prevent early cement hydration, and improve paste 

strength and bonding, along with a host of other characteristics. Correct admixture 

selection and dosing can significantly improve or hinder pervious concrete placement. 

Important Concrete Construction Factors 

 Workability of pervious concrete controls hardened density and durability. Correct 

determination of plastic workability is crucial to proper placement.  

 Variability in aggregate stockpile moisture, environmental conditions, and batch 

composition require verification of consistency between concrete batches for the 

same mixture. 

 Once the concrete has been placed, methods are required to determine if the desired 

engineering properties, such as strength and permeability, were achieved. 

 Various compaction and finishing techniques exist and mixture proportions and 

workability must be adjusted to achieve the design engineering properties. 

 The most critical period for pervious concrete is the curing conditions during the first 

7-days. Proper hydration creates high strength and durability while poor curing allows 

the concrete to desiccate, substantially increasing raveling potential.  

 

In order to improve pervious concrete durability, especially for cold weather 

applications, research must first be performed to understand the effects mixture components 

have on the material properties and to establish initial baseline values for comparison with 
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future research. Once the mixtures are better understood, test procedures must be developed 

to verify the mixture design and engineering properties. Also, since various construction 

practices are available, these practices must be evaluated to determine acceptable methods 

for particular mixtures and placement situations. Of the preceding components that impact 

durability, the following were studied further. 

Objectives of Factors Selected for Further Study 

 The effect of coarse aggregate type on freeze-thaw durability was investigated by 

obtaining samples from around the U.S. and Canada, and creating pervious concrete 

using volumetrically the same mixture proportions to account for varying aggregate 

densities. Aggregate and concrete properties were tested along with freeze-thaw 

durability testing. The objective was to determine what aggregate properties control 

freeze-thaw durability and to provide aggregate criteria suggestions for future 

pervious concrete mixture proportions. 

 The effect of air entrainment was evaluated using two aggregate types, two air 

entraining admixtures, and three dosage rates. Air entrainment was quantified using a 

RapidAir 457 testing device and for durability by freeze-thaw testing. Objectives 

were to quantify the level of entrained air, determine the effect on material properties, 

and to provide suggestions for use of air entrainment in future pervious concrete 

mixtures. 

 While workability controls ease of placement, level of compaction, final density, and 

ultimate durability, current methods of concrete workability determination do not 

apply to fresh pervious concrete properties. As a key factor, the objective of the 

workability study was to develop a workability test for pervious concrete and to 

evaluate the effects common mixture variables, binder and water content and mixing 

time, had on the newly developed workability parameters. 

 The effect of curing method and mixture composition on durability was evaluated 

using six curing methods applied to samples of one concrete mixture and of one 

curing method applied to samples of four different concrete mixtures. Beams were 

tested for flexural strength and surface abrasion resistance. The objective of the study 
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was to determine if the standard plastic cure was adequate and if it out performed 

other curing methods.  

Dissertation Organization 

 This dissertation is organized into seven chapters. Chapter 1 is the introduction and 

problem statement. Chapter 2 provides a review of pervious concrete literature. Chapter 3 is a 

report for research sponsored by the Portland Cement Association concerning the aggregate 

specific effect on the freeze-thaw durability, which will be revised into a submission for the 

American Concrete Institute (ACI) Materials Journal. Chapter 4 is a paper evaluating the 

entrained air content and effect on freeze-thaw durability on pervious concrete, published by 

the Journal of ASTM International. Chapter 5 is a paper discussing the development and 

verification of a proposed new method to determine workability properties of fresh pervious 

concrete submitted to the ASCE Journal of Materials in Civil Engineering. Chapter 6 is a 

paper evaluating various curing methods using concrete strength and surface durability 

submitted to the ASTM Journal of Testing and Evaluation. Summary and conclusions are 

provided in Chapter 7. 



www.manaraa.com

6 

CHAPTER 2. LITERATURE REVIEW 

 A thorough literature review of the current state of the art in pervious concrete was 

provided as part of the author’s master’s degree thesis in 2006 (Kevern 2006). At that time 

Portland Cement Pervious Concrete (PCPC) had been utilized in Florida and the southeastern 

U.S. since the early 1970’s for stormwater benefits. U.S. EPA NPDES Phase II stormwater 

permit requirements were requiring engineers to begin exploring best management practices 

(BMPs) to meet the stormwater quantity and quality levels. Primary issues of concern were 

freeze-thaw durability and clogging potential. Limited test installations in hard-wet freeze 

climates were being constructed in several northern states including Iowa. Pervious concrete 

had been used in limited applications in Europe and Japan on roadways. Results from Japan 

and testing at Purdue showed that pervious concrete had the potential for tire noise reduction 

over a dense-graded pavement. 

 Mixture proportioning typically consisted of single-sized aggregate with locally 

selected levels of cementitious binder and water. Water reducing along with air entraining 

admixtures were also suggested. High durability mixture proportions from Europe found 5 to 

10% fine aggregate an optimal amount for strength and durability. Latex-based admixtures 

had been employed to improve the cement paste tensile strength. Most mixtures in the U.S. 

had relatively high porosity (15%-35%) and low strength, while European mixtures had 

lower porosity (15%-20%) and higher strength. Laboratory freeze-thaw testing showed that 

rapid testing of saturated samples produced 50% faster deterioration than slower testing, 

while semi-saturated or dry samples had even better performance. 

 Various studies in Florida and England showed that pervious concrete had an ability 

to treat stormwater mechanically as well as biologically. Oil dripping from a simulated 

crankcase was metabolized by soil microbes, while nutrient levels and suspended solids were 

reduced between 65% and 95%. Although controlled by local conditions, pervious concrete 

systems easily infiltrated the water quality volume (WQM) of the 2-year rain event and could 

be designed to store up to a 100-year event.   

The following literature review includes a summary of the major advancements, 

findings, and reports in the field of pervious concrete since May 2006. The recent 
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progression in acceptance and validation of pervious concrete most notably includes the 

formation of the American Concrete Institute (ACI) committee 522 on pervious concrete, 

formation of the Association for the Standardization of Testing and Materials (ASTM) 

subcommittee 09.49 on pervious concrete, several reports of research sponsored by the 

Ready Mixed Concrete (RMC) research and education foundation, and the Portland Cement 

Association (PCA) education foundation. 

Additional Literature Produced by Researchers at Iowa State University 

With research findings and interest generated by the author’s master degree thesis, a 

number of reports, papers, and additional research projects were produced by researchers at 

ISU. A summary of the references and key findings are provided in Table 1. 

 In May 2006 the National Ready Mixed Concrete Association (NRMCA) sponsored 

the Concrete Technology Forum – Focus on Pervious Concrete. The proceedings included 

four papers from ISU. “Pervious Concrete Construction: Methods and Quality Control,” 

presented a synthesis of compaction and finishing techniques and presented the relationship 

between compaction and unit weight (Kevern et al. 2006). “Development of Mix Proportions 

for Functional and Durable Pervious Concrete,” described the testing of mixtures containing 

several types and sizes of aggregate along with various admixtures (Wang et al. 2006). “The 

Effect of Compaction Energy on Pervious Concrete Properties,” described the strength and 

unit weight difference of samples placed using two compaction methods (Suleiman et al. 

2006). “An Overview of Pervious Concrete Applications in Stormwater Management and 

Pavement Systems,” presented the integrated study at ISU to develop PCPC for overlay 

applications (Schaefer et al. 2006). 

Site construction and sensor installation along with temperature data produced from 

the ISU Lot 122 stormwater project throughout the first winter was presented at the 

Environmental Sensing Symposium hosted by Boise State University. The paper described 

the construction and sensor installation of the Iowa stormwater project and the preliminary 

data identified the pervious system as much warmer than the surrounding air temperature 

even during the winter months, suggesting further research was required to identify the 

heating mechanism (Schaefer and Kevern 2007). 
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More complete temperature and soil moisture data from ISU Lot 122 were submitted 

to the American Society of Civil Engineering (ASCE) for inclusion in the Geo-Congress 

2008. The results showed that over the course of the 2007 winter, the pervious concrete 

pavement and the aggregate base beneath the pervious concrete remained much warmer than 

the adjacent conventional concrete or the surrounding air temperature. Over the course of the 

winter there was only a small period of time (10 days) when the soil froze beneath the 

aggregate, occurring when the air temperature was too cold for precipitation. Whenever melt 

water was present, the pervious concrete system functioned as an infiltration-based BMP 

(Kevern and Schaefer 2008). 

From the continued research and success of mixture proportioning for freeze-thaw 

durable concrete, an additional journal article was accepted for publication in the Journal of 

ASTM International. “Pervious Concrete Mixture Proportions for Improve Freeze-Thaw 

Durability,” described mixture proportions created with various levels of sand, fibers, and 

types of fibers. The results showed that sand provided the greatest improvement to freeze-

thaw durability with fibers improving mixtures not containing sand (Kevern et al. 2008a). 

As a follow-up to the 2006 conference, the NRMCA will be hosting the 2008 

Concrete Technology Forum – Focus on Sustainable Development, where ISU has three 

presentations and two papers accepted. “A Synthesis of Pervious Concrete Freeze-Thaw 

Testing Results,” overviews all of the to-date freeze-thaw testing performed at ISU (Kevern 

et al. 2008b). “A Retrospective Look at the Field Performance of Iowa’s First Pervious 

Concrete Sections as of Spring 2008,” provides a comparison of initial performance and that 

after two or three years later (Schaefer et al. 2008). 

By applying the classification methods described in Chapter 5, a self-consolidating 

pervious concrete was designed for overlay placement using a slipform paver. A paper 

describing development of the new concrete will be included in the Third Annual Conference 

on the Design and Use of Self-Consolidating Concrete, hosted by Northwestern University. 

Mixtures were designed that possessed high workability with equally high required 

compaction energy. The high workability allowed rapid placement while the high degree of 

compaction energy allowed the concrete to remain permeable after mechanized compaction 

(Kevern et al. 2008c). 
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Table 1. Summary of ISU research findings 

Reference Overview of Key Issues Findings and Conclusions 

Kevern et al. 2006  A wide variety of construction 

practices are currently used for 

pervious concrete placement, yet the 

effects on hardened material 

properties are not known. An 

overview of placement methods is 

provided and slab samples were 

placed in the laboratory using 

different field-based methods. 

The density versus porosity relationship is 

linear for a particular mixture. Fewer 

passes with a heavy roller produces more 

uniform compaction, while more passes 

with a lighter roller densifies the surface 

layer. 

Wang et al. 2006 A comprehensive study of mixture 

proportioning had not been 

performed which used freeze-thaw 

durability as a primary criteria. A 

variety of aggregate types, 

gradations, and sizes were 

investigated along with binder 

amount and admixture dosages. 

Approximately 7% fine aggregate by 

weight of coarse aggregate provided 

significant increases to strength and 

durability. Acceptable mixtures should 

have permeability greater than 0.1 cm/s, 

compressive strength greater than 20 

MPa, and less than 5% mass loss at 300 

cycles using the ASTM C666A method. 

Suleiman et al. 2006 Fresh and hardened concrete 

properties are controlled by the 

density produced by a particular 

compaction method. The effect on 

material properties was explored 

using two different compaction 

energies.  

Samples using the same mixture 

proportions compacted at two different 

energies, low and high, had very different 

properties. Strength decreased and 

permeability and porosity increased. It 

was expected that the low compaction 

samples would experience more rapid 

freeze-thaw deterioration. 

Schaefer et al. 2006 While the benefits of pervious 

concrete for stormwater treatment are 

being research and comparatively 

well understood, pervious concrete 

can be beneficial if used for roadway 

applications.  

Two research tracks were proposed, full-

depth for stormwater applications and 

overlay for noise reduction and skid 

resistance. Both require mixture 

proportioning and thickness design 

procedures. 

Schaefer and Kevern 2007 A fully instrumented parking lot was 

constructed at ISU to quantify effects 

on stormwater of a pervious concrete 

system. 

Sensor installation coordinated with 

contractor scheduling and weather delays 

proved difficult. The aggregate layer 

significantly delayed the frost layer 

formation beneath the pervious pavement. 

Kevern and Schaefer 2008 Temperature data collected from the 

instrumented lot during the winter, 

spring, and summer of 2007 was 

presented.  

The cold weather response showed a 

buffered response of temperature with 

depth. A frost layer developed underneath 

the pervious concrete after 32 days of 

below freezing temperature and thawed 

within 12 hours of the air temperature 

rising above 0ºC. In all conditions, mid-

layer of the pervious concrete was warmer 

than the surrounding air temperature.  

Kevern et al. 2008a The effects on material properties 

including freeze-thaw durability was 

studied using various combinations 

of fine aggregate and polypropylene 

fibers. 

Fine aggregate reduces porosity and 

permeability while increasing strength 

and durability. Fibers follow the same 

trend except for maintaining or increasing 

permeability. Fibers increased durability 

for mixtures without sand, but the best 

mixture had sand and fibers. 
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Table 1. Summary of ISU research findings (cont.) 

Reference Overview of Key Issues Findings and Conclusions 

Kevern et al. 2008b Many different mixture variables 

have been evaluated with respect to 

freeze-thaw durability. A synthesis of 

important testing results was 

provided including a matrix of water-

to-cement ratios, compaction levels, 

SCM replacement levels, and 

admixture types and dosages. 

For mixtures without sand, more water 

improved compaction and durability. 

Higher compaction produced better 

durability. Except for 5% silica fume 

replacement, SCMs reduced durability. 

Latex polymers improved workability but 

generally decreased durability. A more 

realistic procedure of pre-drying with re-

saturating samples produced better freeze-

thaw responses. 

Schaefer et al. 2008 Several pervious concrete locations 

in Iowa have been installed for two 

or more winters. A condition survey 

along with field permeability was 

presented. 

Generally the installations have 

acceptable durability. Sites with 

performance issues had marginal curing 

and excess surface raveling. 

Communication between the designer and 

owner about expectations and 

maintenance was suggested to prevent 

damage due to ignorance of the pavement 

characteristics. 

Kevern et al. 2008c In order to improve durability, 

mixture placement must be more 

consistent. Self-consolidating 

pervious concrete was developed for 

use with a slipform paver. 

Using workability parameters developed 

in Chapter 5, mixtures were developed 

that had high workability for ease of 

placement but also significant additional 

compaction energy required to maintain 

porosity through mechanized placement. 

 

Reports and Activities by the RMC Research & Education Foundation 

 Before the RMC Research & Education foundation began sponsoring pervious 

concrete projects, a synthesis was sponsored for Dr. Heather Brown at Middle Tennessee 

State University to prepare “Pervious Concrete Research Compilation: Past, Present, and 

Future.” The synthesis contained seven sections: Applications and Case Studies, 

Construction Techniques, Durability and Maintenance, Hydrological and Environmental 

Design, Mix Designs, Specifications and Test Methods, and Structural Design and 

Properties. The document included additional sources of information and the general state of 

pervious concrete in the United States (Brown 2007). Brief summaries were provided from 

the proceedings of the 2006 Concrete Technology Forum – Focus on Pervious Concrete, 

sponsored by the NRMCA.  

 RMC then released three research reports available on CD-ROM titled, “Construction 

and Maintenance Assessment of Pervious Concrete Pavements,” “Hydraulic Performance 
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Assessment of Pervious Concrete Pavements for Stormwater Management Credit,” and 

“Compressive Strength of Pervious Concrete Pavements” from the University of Central 

Florida. 

The construction and maintenance assessment compared field hydraulic performance 

of sites located in Florida to the laboratory performance as determined by the embedded-

single ring infiltrometer. Maintenance was performed using various combinations of pressure 

washing and surface vacuuming. Results showed that permeability typically increased by 

200% when maintenance was performed. One of the major factors controlling permeability 

and performance was the quality of initial construction and experienced pervious concrete 

contractors were recommended (Chopra et al. 2007a). 

The hydraulic performance report focused on the infiltration capacity of core samples 

extracted from various sites around Florida. Again, the embedded-single ring infiltrometer 

was used to determine permeability. Laboratory permeability was generally lower than that 

measured in the field although a recommendation was presented to grant stormwater credit 

for infiltration for pervious concrete pavement (Wanielista et al. 2007). 

The study of compressive strength results evaluated core samples previously 

extracted for permeability testing purposes. Concrete with various mixture proportions was 

evaluated resulting in average strength of 11.7 MPa (1,700 psi). Raveling of individual 

concrete pieces was observed at the entrance and exits of various sites leading to the 

recommendation of limiting pervious concrete installation where repetitive loading occurs. 

Higher aggregate to cement ratios decreased strength while higher water-to-cement ratios 

tended to decrease porosity. The recommendation was to limit pervious concrete to lower 

loading applications (Chopra et al. 2007b). 

 An additional study titled “Portland Cement Pervious Concrete: Field Performance 

Investigation on Parking Lot and Roadway Pavements,” evaluated the field performance of 

sites installed in cold weather regions including Indiana, Ohio, Kentucky, Pennsylvania, and 

Colorado. Strength of core samples was correlated to non-destructive ultrasonic pulse 

velocity testing. In-situ permeability was determined using an improvised field permeameter 

and compared with laboratory testing of core samples. Although the sites were relatively 

new, four years old or less, none showed signs of freeze-thaw deterioration. Both vacuuming 
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and pressure washing were appropriate methods to maintain and restore permeability. It was 

recommended that a field investigation be performed in the future to assess long-term 

performance (Delatte et al. 2007). 

A study is currently underway at ISU sponsored by the RMC Research & Education 

Foundation in conjunction with the Federal Highway Administration (FHWA) to evaluate 

pervious concrete for overlay applications. High durability pervious concrete mixtures are 

being developed for overlay applications to reduce tire noise and improve skid resistance on 

high speed roadways.  

Reports and Activities by the Portland Cement Association 

In 2006, the Portland Cement Association (PCA) education foundation sponsored 

three fellowships involving pervious concrete, including Chapter 3 of this dissertation. Of the 

three, “Effect of Pervious Concrete on Potential Environmental Impacts from Animal 

Production Facilities,” has been released on-line. Results showed that pervious concrete 

provided nutrient reduction when used as a filter for animal waste (Luck and Workman 

2007). The third report “Serviceability of Pervious Concrete Pavements,” is pending release. 

In 2004, the PCA and NRMCA released the comprehensive and often cited “Pervious 

Concrete Pavements,” describing the background and uses for pervious concrete (Tennis et 

al. 2004). Early in 2007, the PCA released a supplemental CD-ROM titled “Pervious 

Concrete: Hydrological Design and Resources,” to assist engineers in section design and 

estimating the hydrologic impact pervious concrete may have on a new or existing site 

(Leming et al. 2007a). Late in 2007, a companion manual was released for the CD-ROM 

titled, “Hydrologic Design of Pervious Concrete.” The CD-ROM and the manual cover the 

design process to create a functional pervious concrete system (Lemming et al. 2007b). 

Reports and Activities by the National Ready Mixed Concrete Association 

Motivated by the concrete industry, the NRMCA sponsored the 2006 Concrete 

Technology Forum – Focus on Pervious Concrete, hosted in Nashville, TN. Over two days, 

pervious concrete experts from around the country presented papers highlighting new 

developments, construction techniques, durability and maintenance, and general experiences 

(NRMCA 2006). 
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The construction techniques section included two previously mentioned papers by 

ISU. Additional research was provided from a study at Tennessee Technological University 

where various gradations of crushed material was impact compacted at six levels. Results 

showed smooth aggregate produces denser concrete at equal compaction energy. 

Compressive strength decreased with increased porosity and with increased aggregate 

gradation coarseness (Crouch et al. 2006). 

One other study presented freeze-thaw durability results of pervious concrete samples 

at different moisture conditioning levels. Samples were preconditioned at varying levels of 

vacuum saturation and then exposed to freeze-thaw testing. When vacuum saturated, 

pervious concrete had better resistance than conventional concrete at similar conditioning 

level, however laboratory cured pervious concrete experience more rapid deterioration when 

tested in moist conditions. Moist samples tested in dry conditions, such as in the field, had 

the best freeze-thaw durability. The mechanism of deterioration was most often paste 

debonding from the aggregate resulting in lost particles (Yang et al. 2006).  

To address the need for educated and experienced pervious concrete contractors, the 

NRMCA created the Pervious Concrete Contractor Certification course. Participants learn 

about mixture design and characteristics, tools and equipment, site layout, construction, and 

troubleshooting. Two levels of certification are possible, the technician level requires the 

successful completion of the written portion of the certification course, the craftsman level 

must demonstrate at least 1,500 hours of work experience with pervious concrete and a 

performance evaluation (NRMCA 2005). 

Reports and Activities by the American Concrete Institute 

In response to the popularity and interest in pervious concrete, ACI formed the 522 

pervious concrete committee. In order to forward the progress of pervious concrete, the ACI 

522R-06 committee issued a report to provide a current state-of-practice and identify areas of 

importance for the technology. The document includes ten chapters covering materials, 

design, construction, performance, and future research needs (ACI 2006). A brief history of 

pervious concrete includes the use of pervious concrete as a building material in Europe after 

World War II. Discussion of current applications focuses on parking areas with mention of 

roadway uses. Results for basic properties include linear reduction in strength with increased 
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voids and decreased voids with increased compactive effort. Permeability exponentially 

increases with porosity with a rapid increase above 25%. Only briefly mentioned are mixture 

proportioning and section design. A construction section includes site preparation and 

placement procedures, although only one method of compaction is included. Since no 

standardized testing methods exist, ACI 522R-06 only mentions the need for standard 

development. The document was produced as a first attempt to briefly acknowledge the 

current practices; as the field evolves more revisions will be released. The ACI 522 

committee will be developing specifications for pervious concrete placement which should 

be released for public use later in 2008. 

Other Pervious Concrete Literature  

While the focus of pervious concrete in the U.S. has been for parking areas, 

significant research and developments around the world have been investigating pervious 

concrete for higher-volume applications. From the Netherlands, the ModiSlab (Modular, 

Intelligent, Energy, Slab) consists of a precast concrete panel placed on concrete piles with a 

two-layer pervious concrete surface for noise reduction and skid resistance. The panels are 

cast upside-down and consist of a 30 mm (1.18 in.) fine textured surface pervious mixture for 

noise reduction followed by 40 mm (1.57 in.) of a coarser pervious concrete mixture for 

water transmission, overlying a precast conventional concrete section. The total thickness of 

the slab is 380 mm (15 in.). Test results show that the noise level is 6-7 dB quieter than a 

dense-graded asphalt. A combination of finite element modeling and accelerated load testing 

determined that the required bond strength between the pervious and conventional layers 

needed to be 1 MPa (145 lb/in
2
) to prevent debonding, while the measured values were 2.4 

MPa (345 lb/in
2
). Both field testing and accelerated load results have shown excellent 

durability with little surface raveling (Bax et al. 2007). 

The Australian Road Network Infrastructure Directorate is exploring the potential of 

pervious concrete on roadway surfaces. Pervious concrete mixtures and placement 

techniques were evaluated for wet-on-wet placement for noise reduction and skid resistance. 

The selected mixtures were latex polymer-modified concrete with 56-day flexural strength 

between 1.9 MPa and 2.6 MPa (276 psi and 377 psi). Curing the concrete under plastic for 7-

days produced the greatest strength. It was observed that the void content increased 



www.manaraa.com

15 

significantly with increased mixing time, suggesting that a flowable mixture was desired for 

strength and ease of placement. The best bond strength occurred when the underlying 

conventional concrete was fresh, less than three hours after initial placement (Vorobieff and 

Haber 2005). 

Summary of Research Available in the Literature 

Significant progress concerning all aspects of pervious concrete has been made in 

recent years. The continued interest and research will ensure better performing and longer 

lasting pervious concrete pavements. Table 2 presents a summary of the major 

accomplishments and also continued areas of focus. 

Table 2. Summary of the literature and areas of future research 

What has been accomplished What is yet to be accomplished 

Research related to mixture proportioning and 

responses of various components on material 

properties. 

Create a standardized mixture proportioning 

procedure. 

Development of overlay mixture proportions. Evaluate performance and durability of pervious 

concrete used as an overlay. 

Increased pervious concrete durability and application. Development of pavement design criteria for parking 

areas, low volume roads, and overlays. 

Investigation into the stormwater benefits provided by 

pervious concrete.  

Determining acceptable stormwater quality and 

quantity reduction levels for particular site 

applications for stormwater permitting purposes. 

Contractor certification process. Development of standardized test methods for quality 

control, quality assurance, and verification of required 

engineering properties. 

Short-term durability evaluation in cold climates. Longer-term evaluation with an accurate method to 

determine field permeability. 

Research supporting the benefits and durability of 

pervious concrete. 

Creation of an owner’s manual for pervious concrete 

which clearly defines realistic expectations for 

maintenance for long-term performance. The manual 

must include development of a plan both for cleaning 

schedule and winter maintenance. 
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CHAPTER 3. THE EFFECT OF AGGREGATE TYPE ON THE 

FREEZE-THAW DURABILITY OF PERVIOUS CONCRETE 

A report submitted to the Portland Cement Association through the Education Foundation 

Fellowship program. 

John T. Kevern, Kejin Wang, and Vernon R. Schaefer 

Abstract 

Pervious concrete is becoming more common as a stormwater management tool in 

freeze-thaw climates. One of the main concerns or obstacles preventing more wide-spread 

application is the aspect of freeze-thaw durability, whether perceived or actual. During 

previous investigation into the freeze-thaw durability of pervious concrete it has been 

observed that some aggregates approved for use in conventional concrete experienced 

premature deterioration when incorporated into pervious concrete (Schaefer et al. 2006). This 

paper describes a series of tests designed to determine the specific role coarse aggregate has 

on the freeze-thaw durability of pervious concrete using the ASTM C666A procedure.  

Seventeen different coarse aggregate samples were obtained from locations across the United 

States and Canada. Concrete mixtures were placed using a mixture proportion previously 

determined as freeze-thaw durable. The range of aggregate gradations clearly defined a 

gradation specification and suggestions are made for optimizing the gradation with a small 

portion of sand. Mixtures with excellent freeze-thaw performance contained either granite or 

highly durable river gravel. The impact of aggregate angularity on mixture proportions and 

ultimate yield is also discussed.  

Introduction 

In recent years stormwater regulations have become more stringent requiring 

municipalities to provide treatment of stormwater to reduce both the volume of runoff and 

the concentration of pollutants contained therein.  Many different Best Management Practices 

(BMPs) can be utilized to aid in achieving the new EPA standards and porous pavements, 

especially Portland Cement Pervious Concrete (PCPC), have shown promising 

environmental benefits.  PCPC reduces the hydrologic peak associated with storm events by 
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increasing the time of concentration and by promoting infiltration underneath the pavement 

(EPA 2004).  Pollutants including hydrocarbons are spread over the large exposed surface 

area where natural attenuation reduces contaminant levels, where normally pollutants are 

conveyed directly to nearby surface water via conventional impervious pavement and the 

stormwater collection system.  PCPC has also been shown to reduce pavement noise levels 

(Olek et al. 2003, Bax et al. 2007) and prevents the accumulation of water on pavement 

surfaces where ice may create unsafe surface conditions.  PCPC has been used successfully 

in the southern and western United States (U.S.) for a number of years but the primary 

obstacle preventing PCPC from being used in the cold regions of the U.S. is the lack of test 

methods and experimental data verifying the durability of the concrete in freeze-thaw 

environments (NRMCA 2004).   

Recently, research has been performed at Iowa State University (ISU) exploring 

potential PCPC mixture proportion durability in cold weather applications. The results 

indicate that PCPC made with single-sized aggregate has high permeability but not adequate 

strength. Adding a small amount of sand into the mix improved the PCPC strength and 

freeze-thaw resistance (Kevern et al. 2005). However, the ISU research was limited to the 

use of single-sized aggregates found within a small area of central Iowa. Research has 

indicated that the freeze-thaw deterioration of PCPC is directly related to the aggregate type 

(Kevern et al. 2006) and Figure 1 shows an example. The average mass loss of a set of 

samples containing limestone are compared to a set of samples containing river gravel, 

created using the same mixture proportions. Both aggregates were approved for standard 

Iowa Department of Transportation concrete mixtures, but the additional exposure level of 

aggregate in pervious concrete suggested a more durable aggregate may be required. In order 

to promote further use of PCPC in the U.S., the behavior of a wider variety of aggregates 

must be studied. 
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Figure 1. Freeze-thaw performance of PCPC made with two different aggregates, a 3/8” single sized 

limestone and a #4 river gravel and sand (Kevern et al. 2005) 

Although, no consensus has been reached concerning an appropriate test method for 

evaluating PCPC freezing-thawing resistance. ASTM C 666A was performed since the 

saturated state represented the worst possible scenario for pavement, with the greatest 

potential for accelerated deterioration. Also, the effect of aggregate on PCPC freeze-thaw 

durability may be significantly different from that of conventional concrete because the 

thickness of cement paste surrounding the aggregate is much smaller becoming saturated 

much more quickly leading to premature deterioration.  This may lead to the determination 

that certain aggregates approved for traditional concrete will not be suitable for pervious 

concrete. 

Background 

The Role of Aggregate in the Freeze-Thaw Behavior of Conventional Concrete 

Aggregate, comprising 60% to 75% volume of concrete, plays an important role in 

concrete performance (Kosmatka et al. 2002). Besides influencing concrete workability and 

mechanical properties, aggregate strength, pore structure, size, and gradation also 

significantly affect concrete strength. Durable aggregates are required for long-term concrete 

performance. 

 When the aggregate particles become saturated and the water freezes, hydraulic 

pressure increases, and if the aggregate pores do not allow water to rapidly move to 
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unsaturated portions of the aggregate, hydraulic pressure exceeds aggregate strength causing 

cracking and deterioration. Another aspect of freeze-thaw durability is premature 

deterioration caused by movement of deicer chemicals into the concrete paste matrix. Water 

carries salt solutions into the concrete and when drying occurs the salt crystallizes in the 

concrete or aggregate creating excess pressure and damaging the concrete structure from 

within (Kosmatka et al. 2002). Generally, smaller aggregates are more freeze-thaw durable 

than larger aggregates of the same material by reducing the length water must travel to exit 

the aggregate and relieving pressure (Mehta and Monteiro 1993). In certain aggregate types 

deicer salts damage the chemical structure of the aggregate causing deterioration. The 

various mechanisms of freeze-thaw deterioration are manifested by durability (D) cracking, 

which is the most common distress caused by non-freeze-thaw resistant aggregate. Concrete 

deteriorates from the saturated edges across the slab often forming the shape of a capital 

letter D (Taylor et al. 2006). 

Features and Requirements of Aggregate Used in Pervious Concrete 

In conventional concrete the cement paste surrounds the aggregate particles and 

completely occupies the entire volume between the aggregates (Kosmatka et al. 2002) and 

permeability is primarily controlled by the cement paste. In pervious concrete, ideally, the 

cement paste completely coats the aggregate particles but without occupying too much 

volume between the particles, allowing rapid water movement. Pervious concrete has two 

levels of permeability where, macro-scale voids control stormwater infiltration and micro-

scale voids control the concrete durability. For aggregate freeze-thaw deterioration in 

conventional concrete, water must saturate the concrete by exposed surfaces or edges, 

penetrating through the large volume of cement paste. Oppositely, aggregate in pervious 

concrete is surrounded by a very thin (~1mm) layer of cement paste which may become 

saturated relatively quickly as water infiltrates through the pavement. While sections in cold 

climates are designed to prevent storing water in the pervious concrete layer, the paste may 

actually become saturated when water movement occurs through the pavement, trapping 

moisture inside the coarse aggregate.  

 While aggregate has much the same role in pervious as conventional concrete, certain 

idiosyncrasies of pervious require additional aggregate considerations. Considering that 
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pervious concrete transfers forces through cement paste coated aggregates by aggregate-to-

aggregate contact and the paste contact area connecting the particles, the important aspects of 

the system are: 

 A volume of cement paste is required to completely coat all of the aggregate particles 

with enough paste thickness to provide intraparticle contact area and load transfer. 

 Sufficient paste/aggregate bond strength is required to prevent debonding during load 

transfer. Cement paste must be workable enough to completely coat the aggregate 

particles and lubricate the mixture to achieve the design concrete density but,  have 

minimized paste permeability to help prevent aggregate saturation, most often 

achieved through very low water-to-cement ratios. 

 Aggregate should be durable enough for extreme exposure conditions. 

Overview of Pervious Concrete Freeze-Thaw Behavior 

Recently a number of publications, reports, synthesis, and thesis have been released 

that provide an excellent summary of the current state-of-practice in the field of pervious 

concrete research. A complete literature survey, up to 2004, was included in the Master’s 

thesis of Kevern (2006) and Schaefer et al. (2006) and updates provided in the Ph.D. 

dissertation (Kevern 2008). To prevent unnecessary duplication, the following literature 

review will only include significant contributions to the field of pervious concrete related to 

freeze-thaw durability.  

 The first documented investigations into the freeze-thaw durability of PCPC were 

performed in Belgium and Japan. Beeldens et al. developed a polymer-modified pervious 

concrete for highway pavements (Beeldens et al. 1997). The best performing mixture 

contained a polymer-to-cement ratio of 15% and a sand-to-coarse aggregate ratio of 7%, 

producing 32 MPa (4,650 psi) compressive strength and 5.7 MPa (825 psi) flexural strength 

at a porosity of 25%. Significant improvements to freeze-thaw durability and deicing 

resistance occurred at polymer-to-cement ratios around 10% due to the more continuous 

polymer film formation (Beeldens et al. 2001). Tamai and Yoshida presented “Durability of 

Porous Concrete,” to the sixth CANMET/ACI international conference. It was concluded that 
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freeze-thaw resistance was proportional to the amount of binder. Also, silica fume and air-

entraining improved the freeze-thaw durability of PCPC (Tamai and Yoshida 2003). 

 The National Ready Mixed Concrete Association (NRMCA) published a report titled 

“Freeze-Thaw Resistance of Pervious Concrete,” which indicated that PCPC had poor freeze-

thaw resistance when fully saturated and suggested that the ASTM C666A test procedure 

was overly severe and not indicative of actual field conditions. The document provides a 

representative listing of pervious concrete installations in the U.S., including some in hard 

wet freeze zones installed as early as 1985. The NRMCA concluded at that time, caution 

should be taken when installing pervious concrete in freeze-thaw conditions due to the 

limited experience (NRMCA 2004). 

 The interest in concrete by the ready-mixed concrete community led the NRMCA to 

hold the 2006 Concrete Technology Forum – Focus on Pervious Concrete in Nashville, TN. 

Numerous presentations detailed all aspects of pervious concrete with several including 

freeze-thaw durability. Yang et al. (2006) concluded that saturation state played an important 

role in the freeze-thaw durability and vacuum saturated pervious concrete samples displayed 

better freeze-thaw resistance than similarly prepared conventional concrete. Partially 

saturated PCPC frozen and thawed in air to simulate field conditions showed high durability, 

while the majority of freeze-thaw deterioration occurred in the cement paste. The Ohio 

Ready Mixed Concrete Association presented a summary of pervious concrete sites in the 

Northeast, which commonly experience hard wet freeze conditions. Again, most installations 

were only a few years old, none had experienced freeze-thaw deterioration (Bass 2006). 

 Most recently the RMC research & education foundation released a report titled 

“Portland Cement Pervious Concrete Field Performance Investigation on Parking Lot and 

Roadway Pavements,” which documents field observations and non-destructive test results 

from pervious concrete sites in Ohio, Kentucky, Colorado, Indiana, and Pennsylvania. The 

sites had been in place a maximum of four years and the results showed that the installations 

had good freeze-thaw performance with little clogging and required maintenance. Any 

durability issues were associated with early-age raveling or structural overload (Delatte et al. 

2007). 
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 Starting in late 2004, Iowa State University (ISU) through sponsorship by the Iowa 

Ready Mixed Concrete Association (IRMCA) and Iowa Concrete Paving Association (ICPA) 

began investigating the potential application of pervious concrete. The objective was to 

evaluate currently utilized mixtures with ASTM C666A, fully saturated freeze-thaw 

procedure, and to develop mixtures suitable for use in northern climates. Results of the initial 

study are presented in Kevern 2005, Schaefer et al. 2006, and Kevern 2006. A mass loss of 

15% was used to represent a terminal serviceability level as determined by visual analysis. 

Mixes that contained sand, latex, or both had better freeze-thaw resistance than baseline 

mixes containing only single-sized aggregate.    

 Through continued sponsorship by the Federal Highway Administration (FHWA) and 

the RMC research & education foundation, researchers at ISU are currently developing 

PCPC for slip-form overlay applications for noise mitigation. Two recent papers have been 

published in the journal of ASTM International. “Pervious Concrete Mixture Proportions for 

Improved Freeze-Thaw Durability,” concluded that sand and short polypropylene fibers 

significantly improved freeze-thaw durability (Kevern et al. 2008-1). Another paper utilizing 

an automated air determination device concluded that air entrainment does occur in pervious 

concrete and increased air entrainment improved compaction and freeze-thaw durability 

(Kevern et al. 2008-2).  

A synthesis paper on the freeze-thaw testing performed at ISU has been included in 

the NRMCA 2008 Concrete Technology Forum – Focus on Sustainable Development. 

Durability was improved by optimizing the ratio of cement to aggregate for particular 

aggregate gradations and including the previously mentioned additional fine aggregate and 

fibers. Freeze-thaw durability increased with density for the same mixture proportions. 

Increased water-to-cement ratio improved workability and consequently density, improving 

freeze-thaw durability for mixtures without additional sand. Binary mixtures including 

various replacement rates of fly ash and silica fume showed decreased freeze-thaw durability 

with replacement rate, while ternary mixtures including slag improved tensile strength and 

durability. Latex-based admixtures improved workability and strength but had poor freeze-

thaw performance utilizing the standard ASTM C666A procedure. Freeze-thaw durability 
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improved by drying the samples completely after curing and then resaturating before testing 

to allow formation of the polymer film (Kevern et al. 2008-3). 

The body of knowledge concerning the freeze-thaw durability of pervious concrete is 

building. Research most often reports the effects of mixture proportions or admixtures on 

pervious concrete. Since aggregate comprises the largest fraction of PCPC, the following 

study was designed to identify the specific coarse aggregate effect on the freeze-thaw 

durability of pervious concrete. 

Scope of the Present Study 

In the present study seventeen PCPC coarse aggregate samples, collected from areas 

across the U.S., were characterized. Gradation, shape, absorption, unit weights, and voids of 

the aggregates were analyzed. Compressive strength development with time, splitting 

cylinder tensile strength, permeability, porosity, and freeze-thaw durability of concrete made 

with these aggregates were measured. Relationships among the aggregate properties and the 

PCPC properties were examined. The results allowed establishment of some practical 

requirements/criteria for accepting aggregate properties for use in pervious concrete, such as 

gradation. 

Experimental Work 

Source Locations 

In order to obtain a cross-section of the available aggregates used in pervious 

concrete, material was obtained from state and national associations along with various 

industry representatives that have experience with pervious concrete. The request was for 

aggregate that had been used in pervious concrete or with the potential for use in pervious 

concrete. No requirements were set for aggregate composition or gradation. Since pervious 

concrete has been used since the 1970’s in the southeastern U.S., aggregate was obtained 

from Florida and Georgia. Other than one aggregate from San Diego, the remaining types 

came from regions that routinely experience freeze-thaw activity. The aggregate types and 

source locations are shown in Table 3. 
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 A majority of the aggregate fell into three main types, granite, river gravel, and 

limestone. The angularity was visually classified as angular, round, or a combination which 

included three aggregates classified as semi-angular. An example of the visual classification 

is shown by Figure 2. 

Table 3. Aggregate sources 

Maine, Eliot Granite (ME)Gr Angular

Minnesota, Minneapolis Granite (MN)Gr Angular

New Hampshire, Wilton Granite (NH)Gr Angular

Georgia, Adel Granite (GA)Gr Semi-angular

Indiana, Evansville River Gravel (IN)RG Round

Indiana, Vincennes River Gravel (IN)RG2 Round

New York, Painted Post River Gravel (NY)cRG Angular

Iowa, Ames River Gravel (IA)RG Round

Washington, Seattle River Gravel (WA)RG Round

Florida, Miami Limestone (FL)LS Semi-angular

Iowa, Ames Limestone (IA)LS Angular

Indiana, Evansville Limestone (IN)LS Angular

Indiana, South Bend Limestone (IN)LS2 Angular

Tennessee, Knoxville Limestone (TN)LS Angular

California, San Diego Conglomerate (CA)C Angular

South Dakota, Sioux Falls Quartzite (SD)Qtz Angular

British Columbia, Sechelt Sechelt (BC)S Semi-angular

Location Type Shape ClassificationDesignation

 

 
Figure 2. Examples of round (WA RG), semi angular (GA GR), and angular (NY RG) aggregate 

angularity 

Sample Preparation and Test Methods 

The aggregate material properties were evaluated using ASTM C33 for particle size 

analysis and ASTM C127 for absorption and specific gravity. The dry-rodded unit weight 

(DRUW) was determined according to ASTM C29. To assist defining the aggregate 

angularity, the unrodded unit weight (URUW) was determined by filling a 7 L (0.25 ft
3
) 
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container used for DRUW but, without providing any compaction.  Aggregate abrasion 

resistance was evaluated using the micro-deval device according to ASTM D6928. Where, 

1500 g (3.3 lb) of material was saturated and then abraded with 5,000 g (11 lb) of 9.5 mm 

diameter stainless steel balls in water by a device rotating at 100 rpm for 2 minutes. After 

abrasion, the material was washed over a 1.18 mm (No. 16) sieve and then oven dried to 

determine mass remaining. 

Concrete was prepared using a rotating-drum mixer.  First, to the aggregate in the 

mixer, 2/3rds of the water and the air entraining agent (AEA) was added and mixed until 

foam was observed. Then the cement and water with high-range water reducer (HRWR) were 

added.  Finally, the concrete was mixed for three minutes, covered and allowed to rest for 

three minutes, and then mixed for an additional two minutes before casting. All specimens 

were placed by lightly rodding 25 times in three layers to ensure uniform compaction in each 

lift. In addition to rodding, the samples were placed on a vibration table for three to five 

seconds after rodding each layer to ensure the layers properly meshed together, since the 

rodding was performed to evenly distribute the porosity and not to penetrate the underlying 

layer.  This procedure was designed to uniformly compact the specimens without 

consolidation. The samples were demolded after 24 hours, placed in a humidity chamber at 

>98% relative humidity, and cured according to ASTM C192. 

Compressive strength testing was performed at 7, 21, and 28-days according to 

ASTM C39.  Splitting tensile testing was performed at 28-days according to ASTM C496.  

Both used cylinders of 100 mm (4 in.) in diameter and 200 mm (8 in.) in length. 

The pervious concrete porosity was determined by taking the difference in weight 

between samples oven dry and submerged under water, using Equation 1 and the proposed 

standard procedure developed by Montes et al. (2005).  

)]100(%)
Vol

WW
([1P

w

12                                                                                               (1) 

Where:  

P  =  total porosity, %. 

W1  =  weight under water, kg. 

W2  =  oven dry weight, kg. 

Vol =  volume of sample, cm
3
. 

ρw    =   density of water @ 21ºC, kg/cm
3
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Permeability was determined using a falling head permeability test apparatus.  A 

flexible sealing gum was used around the top perimeter of a sample to prevent water leakage 

along the sides of a sample.  The samples were then confined in a latex membrane and sealed 

in a rubber sleeve which was surrounded by adjustable hose clamps.  The average coefficient 

of permeability (k) was determined using Equation 2, which follows Darcy’s law and 

assumes laminar flow. 

2

1

h

h
LN

At

aL
k                                                                                                                 (2) 

Where: 

k = coefficient of permeability, cm/s. 

a = cross sectional area of the standpipe, cm
2
.  

L = length of sample, cm. 

A = cross sectional area of specimen, cm
2
. 

t   = time in seconds from h1 to h2. 

h1 = initial water level, cm. 

h2 = final water level, cm. 

 

Mixtures were further investigated by freeze-thaw resistance using ASTM C666, 

procedure A, in which samples were frozen and thawed in the saturated condition (Figure 3).  

The durability factors were determined using the standard 60% cutoff for relative dynamic 

modulus (RDM) as specified in ASTM C215, Standard Test Method for Fundamental 

Transverse Resonant Frequency of Concrete Specimens. Also, a less sensitive approach 

determined freeze-thaw durability using the aggregate soundness requirements from ASTM 

C33. When using a magnesium sulfate solution the allowable aggregate mass loss is 18%, 

and 12% is allowed for sodium sulfate solutions. Averaging the two values, the test was 

completed when a sample reached 300 cycles or 15% mass loss.  Durability response was 

tested every 20 to 30 cycles. The durability factors were calculated using equation 3. 

M

PN
DF                                                                                                                        (3) 

Where: 

 DF = durability factor of the test specimen 

 P = relative dynamic modulus of elasticity or relative mass, at N cycles, %. 

N = number of cycles at which P reaches the specified minimum value for 

discontinuing the test or the specified number of cycles at which the exposure is to be 

terminated, whichever is less, 60% RDM, 85% mass remaining, or 300 cycles. 
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M = specified number of cycles at which the exposure is to be terminated, 300 cycles. 

 

 
Figure 3. Freeze-thaw apparatus 

The surface abrasion resistance was determined according to ASTM C944, in which a 

constant load of 98 N (22 lbs) was applied through rotary cutter dressing wheels in contact 

with the sample surface for two minutes. The diameter of the circular abraded area is 81 mm 

(3.25 in.). The beams were first cleaned with a stiff-bristled brush and vacuumed on all sides 

to remove any loose particles. After each abrasion test, the beams were again brushed clean 

and vacuumed to remove loose debris. The mass loss between trials was recorded and a total 

of six abrasion tests were performed on each set of beams. Figure 4 shows the abrasion 

device with a shaft-mounted container for load calibration and abrasion head cutting device. 

Mixture Proportions 

The pervious concrete mixture proportions were selected based on proportions 

previously determined as freeze-thaw durable (Schaefer et al. 2006). The original mixture 

contained river gravel, a small portion of additional concrete sand, Type II cement, air 

entraining agent, and water reducer to allow placement at water-to-cement (w/c) of 0.27. The 

baseline mixture proportions are shown in Table 4, the coarse aggregate mass for all other 

placements were adjusted to maintain the volumetric mixture proportions and produce a 
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Design Void Content (DVC) of 18.7%. The coarse aggregate was brought to saturated-

surface-dry (SSD) condition before batching. 

 
Figure 4. Surface abrasion device 

Table 4. Baseline mixture proportions 

Amount Volume 
Material 

kg/m
3
 (pcf) (%) 

Type I/II Cement 340 (21) 10.9 

Coarse Agg. 1,530 (95) 58.2 

Fine Agg. 80 (5) 2.9 

Water (0.27) 90 (6) 9.3 

AEA, mL/kg 

(oz/cwt) 1.4 (2.2) - 

WR, mL/kg 

(oz/cwt) 2.8 (4.3) - 

Voids  - 18.7 

  

Results and Discussion 

Aggregate Properties 

The aggregate properties are shown in Table 5. Specific gravity values ranged from 

2.35 for the calcareous limestone from Miami to 2.71 for the limestone from Tennessee. The 

micro-deval abrasion resistance ranged from 3.1% for river gravel from Evansville, IN to 

33.0% for limestone from Ames, IA. Ignoring the two limestone samples with significantly 
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higher abrasion responses (Miami, FL and Ames, IA), there was no trend between aggregate 

abrasion and either specific gravity or absorption. 

Table 5. Aggregate properties 

Absorption 

Abrasion 

Resistance DRUW  

Rodded 

Voids URUW 

Unrodded 

Voids Aggregate 
Specific 

Gravity 
(%) (%) kg/m

3
(pcf) (%) kg/m

3
(pcf) (%) 

(ME)Gr 2.57 1.1 8.7 1,460 (91) 43 1,340 (84) 48 

(MN)Gr 2.65 0.6 7.4 1,460 (91) 45 1,320 (82) 50 

(NH)Gr 2.66 1.0 10.3 1,490 (93) 44 1,330 (83) 50 

(GA)Gr 2.66 0.5 11.5 1,500 (93) 44 1,460 (91) 45 

(IN)RG 2.52 1.7 3.1 1,570 (98) 38 1,500 (94) 41 

(IN)RG2 2.55 2.3 8.8 1,580 (99) 38 1,530 (95) 40 

(NY)cRG 2.59 1.6 16.0 1,490 (93) 42 1,300 (81) 50 

(IA)RG 2.62 1.7 14.4 1,640 (102) 37 1,480 (93) 42 

(WA)RG 2.65 1.0 4.1 1,700 (106) 36 1,540 (96) 42 

(FL)LS 2.35 3.8 22.4 1,360 (85) 42 1,210 (76) 49 

(IA)LS 2.45 3.9 33.0 1,390 (87) 43 1,290 (80) 47 

(IN)LS 2.63 1.4 13.2 1,460 (91) 44 1,360 (85) 48 

(IN)LS2 2.64 1.9 10.6 1,440 (90) 46 1,340 (84) 49 

(TN)LS 2.71 0.8 8.5 1,560 (98) 42 1,410 (88) 48 

(CA)C 2.57 1.2 5.8 1,440 (90) 44 1,300 (81) 49 

(SD)Qtz 2.62 0.5 8.8 1,570 (98) 40 1,390 (87) 47 

(BC)S 2.67 0.8 6.1 1,610 (100) 40 1,430 (89) 47 

Avg. 2.59 1.5 11.3 1,510 (94) 40 1,380 (86) 47 

  

As shown by Figure 5, most of the aggregate had absorption ranging from 0.5% to 

2.3% and had corresponding specific gravity values from 2.52 to 2.71. However, two 

limestone samples had low specific gravity (≤2.45) and high absorption rates (≥3.8%). One 

of these samples came from Miami, FL where freeze-thaw is not of a concern, while the 

other was produced in central Iowa. Since the aggregate properties are significantly different 

than the other aggregates, the appropriateness of these two limestone types in pervious 

concrete was initially questionable. 

The relationship between DRUW and URUW can be used to describe the effect 

aggregate angularity may have on the concrete mixture workability. Round aggregate will 

have an URUW closer to its DRUW, due to the self-compacting nature of the round material. 

While the surface friction of the angular particles will naturally create a more open structure 

and cause a larger difference between the URUW and DRUW values. The relationship 

between URUW and DRUW is shown in Figure 6 with a strong linear relationship between 

the compaction states. 
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Figure 5. Relationship between aggregate density and absorption 
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Figure 6. Relationship between aggregate compaction states 

The as-received aggregate gradations are shown in Figure 7. Common of all of the 

gradations were a majority of the particles between the 9.5 mm (3/8 in.) and 4.75 mm (No. 4) 

sieves. The coarsest sample was defined by the South Dakota quartzite which had 5.4% 

passing the 4.75 mm (No. 4) sieve and 4.6% passing the 2.36 mm (No. 8) sieve. The lower 
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gradation represents the limestone from central Iowa which is a commonly available 

gradation used as an intermediate aggregate for asphalt mixtures, with 44.4% passing the 

4.75 mm (No. 4) sieve and 13.1% passing the 2.36 mm (No. 8) sieve. Samples located near 

the coarse and fine gradation extremes were mechanically produced crushed material, while 

the rounded natural gradations fell in the center of the reported gradations. 

In pervious concrete the fine aggregate fraction increases the cement paste volume 

and viscosity, allowing a thicker paste layer on the coarse aggregate and ultimately greater 

contact area between particles. The greater contact area produces higher strength and lower 

porosity than samples with lower amounts of small-sized particles (Wang et al. 2006). 
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Figure 7. Aggregate gradations 

Observing the common gradations and the material property behavior from the sand 

addition, material that functions as coarse aggregate (i.e. load bearing individual pieces) 

includes all particles retained above the 2.36 mm (No.8) sieve, while material that functions 

as fine aggregate (i.e. increases the volume of the cement paste, mortar) includes all particles 

passing the 2.36 mm (No.8) sieve. So, according to ASTM C33 gradation requirements for 

fine aggregate, up to 10% of the fine aggregate fraction may actually contribute to the coarse 

aggregate composition when used in pervious concrete.  

Previous research has shown that an additional 5% to 7% fine aggregate added to the 

coarse aggregate gradation optimizes the mixture producing the greatest strength and 



www.manaraa.com

35 

durability responses (Schaefer et al. 2006). When the optimized sand content is combined 

with the cross section of U.S. aggregates, a clear a gradation criteria is produced as shown in 

Figure 8. The suggested grading requirements for pervious concrete are provided in Table 6. 

The most critical location for optimizing the aggregate gradation involves sand addition 

controlled by the amount passing the 2.36 mm (No.8) sieve. 
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Figure 8. Aggregate gradation limits 

Table 6. Pervious concrete aggregate gradation limits 

Sieve Size Gradation Limits 

mm ID Fine Coarse 

38.1 1 1/2" 100.0 100.0 

19.1 3/4" 100.0 100.0 

12.7 1/2" 100.0 94.3 

9.5 3/8" 99.3 38.1 

4.75 #4 44.4 5.4 

2.36 #8 13.1 4.6 

1.18 #16 10.6 3.6 

0.6 #30 7.3 2.1 

0.3 #50 4.0 0.5 

0.15 #100 1.8 0.0 

 

Concrete Material Properties 

The concrete testing results are shown in Table 7, sorted by aggregate type. 

Washington river gravel had the maximum compressive strength of 28.5 MPa (3,750 psi) 

corresponding to the lowest porosity of 15.1%. Florida limestone had the lowest compressive 

strength of 7.7 MPA (1,110 psi) at 21.9% porosity, which was not the highest. While the 



www.manaraa.com

36 

design porosity was 18.7%, the measured values ranged from 15.1% to 30.0%, with an 

average of 21.1%. 

Table 7. Concrete properties 

Compressive Strength Permeability 
Porosity 

7-day 21-day 28-day 

Splitting 

Tensile 

Strength 
75 mm 

 (3 in.) 

100 mm  

(4 in.) Aggregate 

(%) 

MPa 

(psi) 

MPa 

(psi) 

MPa 

(psi) 

MPa  

(psi) 

cm/s  

(in./hr) 

cm/s  

(in./hr) 

(ME)Gr 22.0 

16.1 

(2,340) 

17.8 

(2,580) 

18.9 

(2,740) 

2.05  

(295) 

0.14  

(198) 

0.49 

 (694) 

(MN)Gr 18.5 

11.6 

(1,680) 

15.6 

(2,270) 

16.0 

(2,330) 

1.85 

 (270) 

0.23 

 (326) 

0.41 

 (581) 

(NH)Gr 19.5 

9.6 

(1,400) 

15.1 

(2,190) 

15.6 

(2,270) 

2.05 

 (300) 

0.13  

(184) 

0.36 

 (510) 

(GA)Gr 15.2 

9.0 

(1,300) 

11.0 

(1,590) 

11.0 

(1,600) 

1.85 

 (265) 

0.10 

 (142) 

0.33 

 (468) 

(IN)RG 16.2 

17.5 

(2,540) 

17.6 

(2,560) 

20.4 

(2,960) 

2.95 

 (425) 

0.11  

(162) 

0.24 

 (340) 

(IN)RG2 19.3 

16.6 

(2,410) 

21.2 

(3,080) 

22.7 

(3,300) 

2.45 

 (355) 

0.16  

(227) 

0.37 

 (524) 

(NY)cRG 30.0 

13.1 

(1,910) 

14.5 

(2,100) 

15.4 

(2,240) 

1.85 

(270) 

0.62 

 (879) 

0.98  

(1,389) 

(IA)RG 21.2 

16.5 

(2,390) 

19.0 

(2,750) 

23.0 

(3,340) 

2.30  

(335) 

0.07 

 (99) 

0.06 

 (85) 

(WA)RG 15.1 

23.4 

(3,400) 

25.1 

(3,640) 

25.8 

(3,750) 

3.00  

(435) 

0.00 

 (0) 

0.06 

 (85) 

(FL)LS 21.9 

6.0  

(870) 

6.5 

 (940) 

7.7 

(1,110) 

0.85  

(125) 

0.11 

 (156) 

0.16 

 (227) 

(IA)LS 25.9 

8.9 

(1,270) 

11.5 

(1,670) 

12.0 

(1,740) 

1.45  

(215) 

0.31 

 (439) 

0.44  

(624) 

(IN)LS 20.9 

16.4 

(2,380) 

17.0 

(2,470) 

20.3 

(2,950) 

2.55 

 (370) 

0.25  

(354) 

0.57 

 (808) 

(IN)LS2 26.9 

17.7 

(2,570) 

18.0 

(2,610) 

19.3 

(2,800) 

2.60 

 (380) 

0.54 

 (765) 

0.88 

 (1,247) 

(TN)LS 21.8 

15.2 

(2,200) 

19.4 

(2,820) 

20.6 

(2,990) 

2.00  

(290) 

0.31 

 (439) 

0.43 

 (609) 

(CA)C 25.2 

15.5 

(2,250) 

16.4 

(2,380) 

19.1 

(2,770) 

2.25 

 (325) 

0.31  

(439) 

1.04 

 (1,474) 

(SD)Qtz 21.6 

14.5 

(2,110) 

15.7 

(2,280) 

17.5 

(2,540) 

2.00  

(295) 

0.32 

 (454) 

0.58 

 (822) 

(BC)S 17.6 

13.4 

(1,940) 

18.2 

(2,650) 

18.9 

(2,740) 

1.75  

(255) 

0.05 

 (71) 

0.38 

 (539) 

  

The results of the splitting tensile compared to compressive strength are shown in 

Figure 9. Splitting tensile strength values ranged from 0.85 MPa (125 psi) to 3.00 MPa (435 

psi). The trend was similar to that assumed for traditional concrete with tensile strength 10% 

of the compressive strength values, values ranged from 9% to 14% for all of the samples. 
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Figure 9. Relationship between splitting tensile and compressive strength 

The permeability values ranged from 0 cm/s (0 in/hr) to 0.62 cm/s (879 in/hr) for the 

75 mm (3 in.) diameter samples and the range increased from 0.06 cm/s (85 in/hr) to 1.04 

cm/s (1,474 in/hr) for the 100 mm (4 in.) diameter samples. Figure 10 shows the permeability 

relationship, where the trendline is plotted along with the line of equality. Since the 100 mm 

(4 in.) diameter samples are always equal to, and in most cases, greater than the values 

determined for the 75 mm (3 in.) diameter samples, it will be necessary to establish the 

representative elementary volume for pervious concrete to allow comparisons between 

permeability values determined for different samples and laboratories. 

In order to use concrete unit weight as quality control criteria for pervious concrete, 

the effect of various mixture components on the fresh concrete compaction characteristics 

must be understood. The relationship between the concrete unit weight and the aggregate 

natural compaction state (URUW) is shown in Figure 11. For the volumetric mixture 

proportions used in this study, URUW controls the resulting concrete unit weight (R
2
 = 0.91). 



www.manaraa.com

38 

(100mm) = 1.44*(75mm) + 0.14

R2 = 0.71

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.20 0.40 0.60 0.80 1.00 1.20

75 mm (3 in.) dia. permeability (cm/s)

1
0
0
 m

m
 (

4
 i

n
.)

 d
ia

. 
 p

e
rm

e
a
b

il
it

y
 (

c
m

/s
)

 
Figure 10. Effect on permeability of sample size 

UW = 1.1*URUW + 24

R2 = 0.91

80

90

100

110

120

130

140

70 75 80 85 90 95 100

Aggregate URUW (pcf)

C
o

n
c
re

te
 U

W
 (

p
c
f)

Concrete UW = 1.07*URUW + 384.48

R2 = 0.91

1,280

1,380

1,480

1,580

1,680

1,780

1,880

1,980

2,080

2,180

1,120 1,220 1,320 1,420 1,520
Aggregate URUW (kg/m3)

C
o

n
c
re

te
 U

n
it

 W
e
ig

h
t 

(k
g

/m
3
)

UW = 1.1*URUW + 24

R2 = 0.91

80

90

100

110

120

130

140

70 75 80 85 90 95 100

Aggregate URUW (pcf)

C
o

n
c
re

te
 U

W
 (

p
c
f)

UW = 1.1*URUW + 24

R2 = 0.91

80

90

100

110

120

130

140

70 75 80 85 90 95 100

Aggregate URUW (pcf)

C
o

n
c
re

te
 U

W
 (

p
c
f)

UW = 1.1*URUW + 24

R2 = 0.91

80

90

100

110

120

130

140

70 75 80 85 90 95 100

Aggregate URUW (pcf)

C
o

n
c
re

te
 U

W
 (

p
c
f)

UW = 1.1*URUW + 24

R2 = 0.91

80

90

100

110

120

130

140

70 75 80 85 90 95 100

Aggregate URUW (pcf)

C
o

n
c
re

te
 U

W
 (

p
c
f)

Concrete UW = 1.07*URUW + 384.48

R2 = 0.91

1,280

1,380

1,480

1,580

1,680

1,780

1,880

1,980

2,080

2,180

1,120 1,220 1,320 1,420 1,520
Aggregate URUW (kg/m3)

C
o

n
c
re

te
 U

n
it

 W
e
ig

h
t 

(k
g

/m
3
)

UW = 1.1*URUW + 24

R2 = 0.91

80

90

100

110

120

130

140

70 75 80 85 90 95 100

Aggregate URUW (pcf)

C
o

n
c
re

te
 U

W
 (

p
c
f)

UW = 1.1*URUW + 24

R2 = 0.91

80

90

100

110

120

130

140

70 75 80 85 90 95 100

Aggregate URUW (pcf)

C
o

n
c
re

te
 U

W
 (

p
c
f)

UW = 1.1*URUW + 24

R2 = 0.91

80

90

100

110

120

130

140

70 75 80 85 90 95 100

Aggregate URUW (pcf)

C
o

n
c
re

te
 U

W
 (

p
c
f)

 
Figure 11. Relationship between concrete unit weight and aggregate natural state 

The relationship between the DVC (porosity) and the actual measured values for the 

particular aggregate types are shown in Figure 12. Round or semi-angular coarse aggregate 

particles produced concrete near or below the DVC, while the angular aggregate particles 

tended to have porosity values higher than the DVC. As expected, the angular aggregate 
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mixtures required more compaction energy to achieve the DVC than the relatively self-

consolidating mixtures containing rounded aggregate.  
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Figure 12. Deviation from design porosity due to aggregate angularity 

Freeze-Thaw Results 

The results of the freeze-thaw testing are shown in Table 6. The original test limits 

were taken as 60% relative dynamic modulus (RDM) or 85% mass remaining, durability 

factors (DF) were also determined for 95%, 97%, and 99% mass remaining criteria. The 

granite specimens had the best freeze-thaw durability with all four granite sources achieving 

greater than 60% DF (RDM) and 85% DF (mass). The poorest freeze-thaw response occurred 

in river gravel specimens from Indiana, which was not expected since the samples had 

acceptable compressive and tensile strength values, 20.4 MPa (2,960 psi) and 2.95 MPa (425 

psi), respectively. Generally samples with higher strength have exhibited greater freeze-thaw 

durability, comparing samples with the same mixture proportions indicated that other factors 

also impact freeze-thaw durability. 
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Table 8. Freeze-thaw testing results 

DF 

(RDM) Durability Factor (% mass remaining) Aggregate 

60% 85% 95% 97% 99% 

FT 

Evaluation 

(ME)Gr 77 99 99 99 99 Accept. 

(MN)Gr 85 99 99 99 96 Accept. 

(NH)Gr 64 99 99 99 99 Accept. 

(GA)Gr 87 98 98 98 57 Accept. 

(IN)RG 3 17 13 12 9 Unaccept. 

(IN)RG2 3 12 8 5 2 Unaccept. 

(NY)cRG 32 87 76 68 45 Unaccept. 

(IA)RG 22 66 55 47 23 Unaccept. 

(WA)RG 96 98 98 98 47 Accept. 

(FL)LS 8 22 21 16 10 Unaccept. 

(IA)LS 20 58 56 53 45 Unaccept. 

(IN)LS 19 60 51 45 23 Unaccept. 

(IN)LS2 7 40 37 30 16 Unaccept. 

(TN)LS 37 95 95 81 62 Accept. 

(CA)C 68 95 95 90 14 Accept. 

(SD)Qtz 50 97 97 96 53 Accept. 

(BC)S 85 98 98 98 67 Accept. 

  

The relationship between RDM and relative mass durability factors is shown in 

Figure 13. Once the samples reached 37% durability factor using RDM, the mass response 

produced a durability factor of 95% or greater. Additional mass loss criteria were also 

evaluated to determine if the 85% mass remaining cutoff was appropriate. The mass loss 

durability factors for 85% along with 95%, 97%, and 99% versus the 60% RDM criteria are 

shown in Figure 14. There is a similar trend for the 85%, 95%, and 97% mass cutoff criteria 

of freeze-thaw durability by the mass loss criteria achieved for samples with RDM of 37% or 

greater. The 99% durability factor for mass loss did not show any trend due to the variability 

in particles lost from the surface of the freeze-thaw beams which did not represent the 

structural soundness of the beams. For the remainder of this report, samples that surpassed 

37% RDM had acceptable freeze-thaw durability and those below, unacceptable. 
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Figure 13. Relationship between freeze-thaw durability factors 
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Figure 14. Durability factors with different criteria 

In previous studies the relationship has been increased freeze-thaw durability with 

higher concrete unit weight, for mixtures containing the same aggregate (Kevern 2006). The 

relationship between durability factor, concrete density, and aggregate specific gravity using 

the RDM criteria are shown in Figure 15. For this study, there was not a trend of higher 

freeze-thaw durability with increased concrete density or aggregate specific gravity. 
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Figure 15. Relationship between concrete and aggregate densities and freeze-thaw response 

Excluding the two limestone samples with very high absorption values, there was a 

good trend of increased freeze-thaw durability with decreased aggregate absorption (Figure 

16). Generally, aggregate with absorption less than 1.5% had acceptable freeze-thaw 

durability. 

Abs = -0.37Ln(RDM) + 2.5

R2 = 0.73
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Figure 16. Effect of aggregate absorption on freeze-thaw durability 

Table 9 presents the average aggregate and concrete properties of the mixtures which 

had acceptable and unacceptable freeze-thaw durability. Properties that were significantly 
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different between the freeze-thaw responses are underlined. Those properties which had the 

greatest influence were aggregate absorption and abrasion resistance with a small effect 

observed of specific gravity. No property of the concrete correlated to freeze-thaw response. 

At least for this particular set of mixture proportions, which have been previously determined 

as freeze-thaw durable, the aggregate, not the concrete, controlled the ultimate freeze-thaw 

durability. 

Table 9. Acceptance properties of freeze-thaw samples 

 FT Response 

Aggregate accep. unaccep. 
w/o 

outliers 

SG 2.64 2.57 2.59 

Abs (%) 0.82 2.27 1.75 

DRUW (kg/m
3
) 1,530 1,490 1,530 

URUW (kg/m
3
) 1,390 1,360 1,410 

Abrasion (%) 7.9 15.2 11.0 

Concrete       

UW (kg/m
3
) 1,880 1,860  

Porosity 19.6 22.8  

k, 100mm (cm/s) 0.45 0.46  
Compressive Strength 

(MPa) 18.2 17.6  

Tensile Strength (MPa) 2.1 2.1   

  

The results of freeze-thaw testing are shown in Figure 17. through Figure 21 for the 

range of responses. For the river gravel and quartzite mixtures (Figure 17. and Figure 18), 

mass loss occurred by the separation of paste from the aggregate surface and the occasional 

splitting of a surface aggregate piece. The lowest acceptable freeze-thaw response (Figure 

19) deteriorated in a similar mechanism to the previous samples, although more aggregate 

was lost from the surface. Unacceptable freeze-thaw deterioration occurred by deterioration 

of the aggregate causing a loss of cement paste contact between particles and a large amount 

of aggregate raveling (Figure 20 and Figure 21). When the aggregate was not freeze-thaw 

durable, expansion of the water inside the aggregate particles or in the paste caused the thin 

outer cement paste shell to become detached. This mechanism occurred throughout the 

sample, reinforcing the difference in freeze-thaw behavior between pervious and 

conventional concrete. The thin layer of cement paste coating the aggregate had limited 

ability to prevent the migration of water into the coarse aggregate. Consequently, the 

observation of durability cracking and freeze-thaw deterioration may occur much more 
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quickly and severely in pervious concrete compared to traditional concrete produced with the 

same aggregate. 

 
(a) Before testing                                                    (b) After 300 cycles  

Figure 17. Washington river gravel freeze-thaw results, DF=98 mass, DF=96 RDM 

 
(a) Before testing                                                    (b) After 300 cycles 

Figure 18. South Dakota quartzite freeze-thaw results, DF=97 mass, DF=50 RDM 

 
(a) Before testing                                                    (b) After 300 cycles 

Figure 19. Tennessee limestone freeze-thaw results, DF=95 mass, DF=37 RDM 

 
(a) Before testing                                                    (b) After 206 cycles 

Figure 20. Iowa limestone freeze-thaw results, DF=58 mass, DF=20 RDM 

 
(a) Before testing                                                    (b) After 41 cycles 

Figure 21. Indiana river gravel freeze-thaw results, DF=12 mass, DF=3 RDM 

Conclusions and Recommendations 

The following conclusions and recommendations are made from the present study: 

 Aggregate absorption has the greatest effect on the freeze-thaw durability of pervious 

concrete. The average absorption for mixtures with acceptable freeze-thaw durability 
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was 0.82%. Mixtures with acceptable freeze-thaw durability also had higher 

aggregate specific gravities (avg. 2.64) and abrasion resistance (avg. 7.9%).  

 The Unrodded Unit Weight (URUW) or natural state of the aggregate controlled the 

resulting concrete unit weight. 

  Mixtures that contained angular aggregate tended to have porosity greater than the 

Design Void Content (DVC), while rounded or semi-angular aggregate were near to 

or below the DVC. 

 The freeze-thaw durability results showed that mixtures which have Durability 

Factors (DF) >37% using the 60% Relative Dynamic Modulus (RDM) criteria have 

acceptable freeze-thaw durability. Using mass remaining as a freeze-thaw durability 

criteria, 85% mass remaining criteria produced the same durability response as 97% 

mass remaining when compared to RDM 60% criteria. 

 For the concrete produced with the same mixture proportions, the concrete properties 

were not able to be correlated to freeze-thaw performance. 

 The cross-section of aggregate from the United States had a narrow range of utilized 

gradations. By the addition of known beneficial quantities of fine aggregate, a clearly 

defined aggregate grading requirement was produced. 

 It is suggested that aggregate for high durability mixtures (i.e. heavy traffic loading or 

hard wet freeze environments) should have specific gravity greater than 2.5, 

absorption less than 2.5%, abrasion mass loss less than 15%, and have a combined 

gradation close to the lower gradation limit. 
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CHAPTER 4. A NOVEL APPROACH TO CHARACTERIZE 

ENTRAINED AIR CONTENT IN PERVIOUS CONCRETE 

Paper published in the Journal of ASTM International, Vol. 5, No. 2, February 2008. 

John T. Kevern, Kejin Wang, and Vernon R. Schaefer 

Abstract 

The current pervious concrete placed in cold climates generally contains air 

entrainment but, unlike traditional concrete, the evaluation of entrained air is not performed. 

This paper presents results from a study that characterized the entrained air voids in pervious 

concrete using a RapidAir system. The RapidAir system is an automatic device that 

determines the air void properties of hardened concrete according to ASTM C457. Two types 

of aggregates, crushed limestone and rounded river gravel (pea gravel), and two types of air 

entraining agents (AEA), natural and synthetic were used. The air entrainment dosage rates 

varied from zero to double the manufacturer’s recommended dosage. Compressive strength, 

tensile strength, and freeze-thaw durability (ASTM C666A) of the pervious concrete were 

tested. The results show that use of air entrainment improves workability of pervious 

concrete, thus reducing the overall porosity and increasing unit weight of the pervious 

concrete. The strength and freeze-thaw durability also increases with the level of entrained 

air in pervious concrete. (160 words) 

 

Keywords: Pervious concrete, freeze-thaw durability, freeze-thaw resistance, air entrainment, 

air content testing 

Introduction 

As Portland Cement Pervious Concrete (PCPC) becomes a more popular stormwater 

management tool, the number of installations in cold climates increases. It is widely accepted 

that air entrainment increases the freeze-thaw durability of traditional concrete [1]. The 

microscopic air void system can provide spaces in the concrete to accommodate expansive 

materials, such as water that is expelled from ice formation, thus reducing hydraulic and 

osmotic pressures. PCPC has a more complicated void system than traditional concrete, 
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containing not only the small-sized entrapped and entrained air in the paste or mortar but also 

porosity, the larger-sized interconnected void space between the paste-coated aggregate 

particles. While air content is a standard property of traditional concrete, no method is 

currently used to characterize the air voids in pervious concrete. 

Due to the large porosity in pervious concrete, commonly used methods of concrete 

air measurement, such as pressure or volumetric air meters, do not provide useful data for 

pervious concrete. Although, the National Ready Mixed Concrete Association (NRMCA) 

suggests air entraining pervious concrete at a standard dosage rates used to produce concrete 

curb mixtures, no study has properly approved whether or not air entrainment is necessary 

for pervious concrete [2].  

The RapidAir system is a relatively new device that automatically determines 

entrained air properties using ASTM C457-98 [3]. Sample cross sections are stained black 

and then the voids are filled with a white material, such as zinc paste. The contrast allows the 

device to distinguish between air voids and the hardened matrix of either paste or aggregate. 

Recent studies have shown that the RapidAir has a high degree of multi-lab reproducibility 

and has less variation than the ASTM C457 manual technique [4]. 

In the present paper, the air structure of pervious concrete was determined using the 

RapidAir system. The test results provide insight into whether or not the use of Air 

Entraining Agents (AEA) in pervious concrete is necessary and if the dosage rates of AEA 

used were sufficient to impact durability. 

Material Properties and Mixture Proportions 

Two types of coarse aggregate were included in the study, crushed limestone and 

rounded-river gravel (pea gravel). The basic properties and gradations of the aggregates are 

shown in Table 10. The limestone has previously been shown to exhibit poor freeze-thaw 

durability in the ASTM C666A test therefore, the study of freeze-thaw resistance of the 

concrete produced with the limestone is not included in the present paper [5]. 
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Table 10. Coarse aggregate properties 

Property 

Aggregate Type 

Limestone Pea Gravel 

Specific Gravity 2.45 2.62 

DRUW - kg/m
3
 (lb/ft

3
) 1,390 (87) 1,640 (102) 

Voids in the aggregate (%) 43 37 

Absorption (%) 3.9 1.7 

Micro Deval Abrasion (%) 36.4 14.4 

Sieve Percent Passing  

19.0 mm (3/4 in.) 100.0 100.0 

12.5 mm (1/2 in.) 99.9 99.8 

9.5 mm (3/8 in.) 88.5 99.7 

4.75 mm (No.4) 22.9 21.8 

2.36 mm (No.8) 4.3 1.2 

 

The mixture proportions of the pervious concrete studied are shown in Table 11. The 

fine aggregate is standard concrete river sand with a specific gravity of 2.62 and a fineness 

modulus of 2.9. The cement is a Type II, marketed as a Type I/II, with a specific gravity of 

3.15 and a Blaine fineness of 384 m
2
/kg. A polycarboxylate-based High-Range Water 

Reducer (HRWR) was used for all mixtures. The natural AEA (N) was a vinsol resin type, 

and the synthetic AEA (S) was olefin based. A total of ten mixtures were studied. 

Table 11. Mixture Proportions 

Mixture  

Coarse 

Aggregate 

Fine 

Aggregate Cement 

w/c 

HRWR AEA 

kg/m
3
   

(lb/ft
3
) 

kg/m
3
 

(lb/ft
3
) 

kg/m
3
 

(lb/ft
3
) 

mL/kg 

(oz/cwt) Type mL/kg (oz/cwt) 

Pea Gravel 

(PG) 

1,525 

(2,570) 80 (130) 345 (580) 0.27 

2.75 

(4.25) N, S 

0, 1.4, 2.8 (0.0, 2.2, 

4.3) 

Limestone 

(LS) 

1,425 

(2,400) 80 (130) 345 (580) 0.27 

2.75 

(4.25) N, S 

0, 1.4, 2.8 (0.0, 2.2, 

4.3) 

Sample Preparation 

Concrete was mixed using a rotating-drum mixer by dry mixing a small amount of 

cement (about 5%) with the aggregate until the aggregate particles were completely coated 

(about one minute).  Next, 2/3rds of the water and the AEA were added and mixed until foam 

was observed. Then the remaining cement and water (with HRWR) were added.  Finally, the 

concrete was mixed for three minutes, covered and allowed to rest for three minutes, and 

then mixed for an additional two minutes before casting. All specimens were placed by 

lightly rodding 25 times in three layers to ensure uniform compaction in each lift. The 
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samples were placed on a vibration table for up to five seconds after rodding each layer. 

After 24 hours the samples were demolded and placed in a fog room at 98% relative 

humidity and cured according to ASTM C192-02 [6].   

Cylinder specimens 100 mm (4 in.) in diameter and 200 mm (8 in.) in length were 

used for RapidAir testing. The top and bottom 50 mm (2 in.) of the hardened concrete 

cylinders were removed using a concrete slab saw. Two more cuts were then made vertically 

to produce a specimen with dimensions of 100 mm (4 in.) by 100 mm (4 in.) by 19 mm (0.75 

in.). The specimen represents a vertical section taken from the center of the cylinder. The 

samples were then wet-sanded with progressively finer grit paper, finishing with six μm grit.  

Samples were treated according to the manufacture’s recommendations [3]. The 

polished samples were coated with a broad-tipped black marker. After the ink had completely 

dried, the samples were placed into an 80ºC oven for two hours. Then, the samples were 

removed and coated with a white paste comprised of petroleum jelly and zinc oxide and 

allowed to cool. The extra paste was removed by dragging an angled razor blade across the 

surface until all of the paste was removed from the aggregate and cement paste areas. If 

porous areas of the aggregates contained any white paste, they were individually colored with 

a fine-tip black marker [3].  

Once a specimen was prepared, the RapidAir device was used to scan across the 

sample using a video frame width of 748 pixels.  Up to ten probe lines per frame can be used 

to distinguish between the black and white sections. A white-level threshold adjustment 

further refines the image before air void determination. 

Testing Procedures 

The porosity of the pervious concrete was determined using Archimedes principle by 

taking the difference in weight between oven-dry and saturated submerged specimens using 

the procedure developed by Montes et al. [7]. The average values of triplicate testing results 

on 100 mm (4 in.) by 200 mm (8 in.) samples are reported in this paper.  

Compressive strength testing was performed according to ASTM C39-01 [8].  

Splitting tensile testing was performed according to ASTM C496-96 [9]. 

The water permeability of the specimens was determined using the falling head 

permeability test apparatus. A flexible sealing gum was used around the top perimeter of a 
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sample to prevent water leakage along the sides of a sample. The samples were then confined 

in a latex membrane and sealed in a rubber sleeve which was surrounded by adjustable hose 

clamps. The test was performed using several water heights which represented values that a 

pavement may experience [10]. The average coefficient of permeability (k) was then 

determined following Darcy’s law and assuming laminar flow. Reported permeability values 

represent an average of triplicate testing results on 100 mm (4 in.) diameter by 75 mm (3 in.) 

samples removed from the center of a 100 mm (4 in.) by 200 mm (8 in.) cylinder.  

Freeze-thaw resistance was tested using ASTM C666-97, procedure A, in which 

samples were frozen and thawed in the saturated condition [11].  

Values determined from the RapidAir device (Figure 22) are reported according to 

ASTM C-457-98 [12]. Five traverse lines per frame were used to distinguish between the 

black sections (aggregate or paste) and the white portions (compacted, entrapped, or 

entrained air). The threshold values were 120 for the pea gravel mixtures and 104 for the 

limestone mixtures. From previous studies it has been determined that threshold values are 

not very sensitive to some changes and ultimately the threshold used for testing is best 

determined by experience according to specific conditions [4]. 

 
Figure 22. RapidAir device 

Results and Discussion 

General properties of the concrete studied are shown in Table 12. The unit weight 

increased from 1,920 kg/m
3
 (120 lb/ft

3
) to 2,070 kg/m

3
 (129 lb/ft

3
) and the porosity decreased 

from 27% to 15% for the pea gravel mixtures having air entrainment from zero to double the 

recommended dosage. As air entrainment occurs the volume of paste or mortar increases. 
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The increased volume of paste may reduce the space between the aggregate particles and/or 

more completely coat the aggregate particles improving the concrete workability and causing 

better compaction, thus reducing the porosity and increasing the concrete unit weight. With 

the increased unit weight and reduced porosity, the compressive strength increased from 16.1 

MPa (2,340 psi) to 24.4 MPa (3,530 psi), the splitting tensile increased strength from 1.95 

MPa (280 psi) to 2.85 MPa (410 psi) and permeability decreased from 3,492 cm/hr (1,375 

in./hr) for the highest porosity sample to 72 cm/hr (28 in./hr) for the lowest porosity sample. 

Table 12. Concrete testing results 

Mixture 

Porosity Unit Weight 

28-day Compressive 

Strength 

28-day Splitting 

Tensile Strength Permeability 

(%) kg/m
3
 (lb/ft

3
) MPa (psi) MPa (psi) cm/hr (in/hr) 

PG 27.0 1,920 (120) 16.1 (2,340) 1.95 (280) 3,492 (1,375) 

PG-N1 23.0 1,980 (124) 23.0 (3,340) 2.30 (340) 1,116 (439) 

PG-N2 20.7 1,990 (124) 24.4 (3,530) 2.85 (410) 720 (283) 

PG-S1 21.2 2,000 (125) 23.0 (3,340) 2.30 (335) 216 (85) 

PG-S2 15.3 2,070 (129) 23.8 (3,450) 2.40 (345) 72 (28) 

LS 32.6 1,720  (108) 15.1 (2,190) 1.60 (230) 3,672 (1,446) 

LS-N1 31.7 1,710 (107) 13.9 (2,020) 1.40 (205) 2,844 (1,120) 

LS-N2 31.1 1,740 (109) 11.3 (1,650) 1.30 (185) 2,664 (1,049) 

LS-S1 25.9 1,710 (107) 12.0 (1,740) 1.50 (215) 1,584 (624) 

LS-S2 24.7 1,720 (107) 9.6 (1,390) 1.70 (245) 900 (354) 

 

The unit weight values for the angular crushed limestone mixtures were less variable 

than the pea gravel mixtures and ranged from 1,710 kg/m
3
 (107 lb/ft

3
) to 1,740 kg/m

3
 (109 

lb/ft
3
). The highest and lowest unit weight values did not coincide with lowest and highest 

porosity as did the pea gravel mixtures, although the variability in unit weight values was 

relatively low 30 kg/m
3
 (2 lb/ft

3
). The porosity values ranged from 32.6% for the mixture 

without air entrainment, to 24.7% for the mixture with double dosage synthetic air entrainer. 

It is possible that for the case of the limestone aggregate, the reduction in porosity occurred 

primarily because the increased paste volume resulting from the air entrainment filled the 

voids between the aggregate particles. Permeability ranged from 3,672 cm/hr (1,446 in./hr) 

for the highest porosity mixture to 900 cm/hr (354 in./hr) for the lowest porosity mixture. 

The air entrainment produced increased workability/compactibility for both mixtures but the 

effect was more pronounced in the pea gravel aggregate. 
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The following trends can be observed from the concrete testing results (Table 12), 

which are consistent with previously observed trends [5].  

1. Addition of AEA decreases concrete porosity, thus increasing unit weight. 

2. As concrete porosity decreases, the concrete unit weight increases, compressive 

strength, and tensile strength increase, while permeability decreases. 

The void structure of two limestone samples prepared for RapidAir testing are shown in 

Figure 23, (a) a sample containing no air entrainment and (b) a sample containing the highest 

amount of entrained air produced from the double dosage of the synthetic air entrainer. The 

boxes represent further magnified areas. It was observed that Figure 2(c), no AEA, appears 

much darker than Figure 2(d), the paste with entrained air. During sample preparation, zinc 

paste fills in the entrained air void space resulting in a grayish coloration in the picture of the 

paste while, the pure white areas are the entrapped air or water-permeable voids (porosity). 

In the RapidAir testing, each sample was rotated 90º between trials to determine the 

consistency of the measurements. Table 13 shows the variation in results produced for the 

pea gravel mixture with double dosage of the natural AEA. The rapidair device reports 

entrained air up to 4 mm in size so then the total air as measured by the rapidair includes air 

voids 4mm and smaller (Total Air <4mm). 
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(a) Limestone with no AEA                            (b) Limestone with double synthetic AEA                 

          
 (c) Area A in Figure 2(a)                                (d) Area B in Figure 2(b) 

 Figure 23. Images of typical pervious concrete samples 

Table 13. Variation of RapidAir tests for a typical sample 

PG-N2 

Total Air (<4mm) Entrained Air (< 1mm) 

Air 

(%) 

SpF 

(mm) SSA (mm
-1

) 

Air 

(%) 

SpF 

(mm) SSA (mm
-1

) 

1 (0º) 16.53 0.054 22.47 7.04 0.057 50.09 

2 (90º) 15.51 0.051 25.39 6.66 0.053 56.80 

3 (180º) 15.21 0.050 26.70 8.89 0.051 44.23 

4 (270º) 16.15 0.053 23.54 6.76 0.056 53.47 

Average 15.85 0.052 24.53 7.34 0.054 51.15 

Std dev. 0.60 0.002 1.89 1.05 0.003 5.36 

SpF-Spacing Factor, SSA-Specific Surface Area 

The air void characteristics are shown in Table 14. As previously mentioned, for 

concrete made with rounded pea gravel aggregate, increased air entrainment results in more 

paste and in increased workability, decreasing porosity. The synthetic AEA at the single 

dosage produced similar amounts of entrained air as the natural AEA at double dosage. The 

levels of entrained air in the limestone ranged from 2.3% (without AEA) to 14.4% (with 
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double dosage of synthetic AEA) and the levels of entrained air in the pea gravel mixtures 

ranged from 2.7% to 8.6%. The air void spacing factor decreased with increased air 

entrainment. It is generally accepted that smaller spacing factor produces better freeze-thaw 

protection of the paste however, all of the samples tested had values lower than the suggested 

limit of 0.2mm [13]. A few larger air voids (> 1mm) caused the substantial increase in air 

volume between that measured as entrained air and the total air less than four mm. The larger 

voids but did not significantly impact the spacing factor, although the average specific 

surface area decreased. 

Table 14. Air void characteristics 

Mixture 

Porosity 

Average of RA Analysis  

Entrained Air (< 1mm)  

Average of RA Analysis  

Total Air (< 4mm) 

(%) Air (%) 

SpF 

(mm) SSA (mm
-1

) 

Air 

(%) 

SpF 

(mm) SSA (mm
-1

) 

PG 27.0 2.7 0.143 2.75 18.3 0.153 7.31 

PG-N1 23.0 6.7 0.065 47.81 18.6 0.062 18.19 

PG-N2 20.7 7.3 0.054 51.15 15.9 0.052 24.53 

PG-S1 21.2 7.8 0.068 49.58 11.8 0.066 22.30 

PG-S2 15.3 8.6 0.055 43.79 16.8 0.052 23.36 

LS 32.6 2.3 0.115 52.52 11.7 0.149 11.82 

LS-N1 31.7 4.3 0.074 60.76 13.2 0.073 21.46 

LS-N2 31.1 6.8 0.047 65.45 18.5 0.045 25.21 

LS-S1 25.9 6.7 0.063 48.72 15.6 0.060 22.04 

LS-S2 24.7 14.4 0.034 41.84 26.1 0.033 24.20 

SpF- Spacing Factor, SSA- Specific Surface Area 

The air content for the pea gravel mixtures is shown in Figure 24 for measure 

porosity and total air and entrained air measured by the RapidAir device. The porosity 

decreased with increased level of air entrainment caused by the additional workability added 

to the cement mortar by the entrained air. The level of entrained air and porosity were similar 

between PG-N2 and PG-S1. The porosity represents an average of the water-permeable void 

space measured by the water displacement method, while the RapidAir values represent the 

measured air less than 4 mm. The porosity values were higher than total air for all mixtures 

except for the highest level of air entrainment (PG-S2) which had a porosity of 15.3% and 

total RapidAir voids of 16.8%. The difference between the porosity measurement and total 

RapidAir measurement is 1.5%, which is smaller than the 2.2% variation due to the testing 

method for the porosity determination [7]. As more air entrainment occurs, workability 

increases, and the samples become more compacted. The compacted samples generally have 
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smaller pores, thus making more of the porosity void space included in the RapidAir 

measurements. 

 

Figure 24. Total air and entrained air for pea gravel aggregate 

The air void size distribution for the pea gravel mixtures are shown in Figure 25. The 

highest occurrence of entrained air was in the range of 0.02 to 0.03 mm. A majority of the 

entrained air was sized between 0.01 and 0.1 mm. The natural AEA produced higher 

amounts of the smaller (0.02 to 0.05 mm) voids, while the synthetic AEA produced higher 

amounts of the medium-sized (0.05 to 0.10 mm) voids. The samples with no AEA had the 

lowest level of entrained air. 

 
Figure 25. Air void distribution in the pea gravel mixtures 

The cumulative distribution of entrained air in the pea gravel mixtures is shown in 

Figure 26. The delineation between entrained air and porosity can clearly be observed 

between void size less than one mm and those greater. The samples with no air entrainment 

had the least volume of entrained air. Samples with double dosage of natural AEA (PG-N2) 
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and single dosage of synthetic AEA (PG-S1) had similar levels of air entrainment. The 

highest dosage of the synthetic AEA had the highest level of entrained air. 

 
Figure 26. Cumulative air content of pea gravel mixtures 

The air contents for the limestone mixtures are shown in Figure 27 for measured 

porosity and total air and entrained air determined by the RapidAir device. Differently, for 

concrete made with the angular limestone aggregate, the total air content measured by the 

RapidAir system (< 4mm) increased with air entrainment. It is possible that due to the rough 

surface texture of the limestone aggregate, the improvement in concrete workability due to 

the air entrainment might also be less effective than that which occurred in the concrete made 

with rounded pea gravel. The porosity generally decreased with increased entrained air, but 

not as significantly as the pea gravel due to the ability of the crushed material to resist 

compaction through aggregate friction. Similar to the pea gravel mixtures, the porosity was 

higher than the RapidAir total for all mixtures except that with the highest amount of air 

entrainment (LS-S2). The testing error of the measured porosity (24.7%) was within that of 

the RapidAir device (26.1%) for LS-S2). 
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Figure 27. Total air and entrained air for limestone aggregate 

The air void size distribution for the limestone mixtures are shown in Figure 28. 

Significantly higher amounts of air voids were generated at both the double AEA additional 

levels, particularly in the small (0.01 to 0.03 mm) range. The synthetic AEA had higher 

amounts of the small voids at the double dosage and the amounts of small-sized voids were 

similar at the recommended dosage rate. 

 
Figure 28. Air void distribution in the limestone mixtures 

The cumulative volume of entrained air for the limestone mixtures is shown in Figure 

29. The rapid increase in measured air above the 1 mm size again provides segregation 

between entrained air and porosity. Samples with the double dosage of synthetic AEA (LS-

S2) had the highest amount of entrained air, while the lack of AEA (LS) had the lowest 

amount of entrained air. Similar to the pea gravel mixtures, the single dosage of synthetic 

AEA (LS-S1) produced equal volume of entrained air as the higher dosage of the natural 

AEA (LS-N2). 
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Figure 29. Cumulative air content of limestone mixtures 

Freeze-thaw test results for the pea gravel concrete are shown in Figure 30. As 

mentioned before, the freeze-thaw test results of the limestone concrete are not presented 

here since the limestone aggregate is not freeze-thaw durable using the ASTM C666A 

procedure. The pea gravel has been previously shown freeze-thaw durable [5]. The only 

mixture which completed the duration of 300 cycles had the greatest amount of entrained air 

(8.6%), lowest porosity (15.3%), and highest unit weight (2,060 kg/m
3
), PG-S2. Poorest 

freeze-thaw durability, failure at 99 cycles, occurred in the mixture without AEA (PG), 

which had the lowest amount of entrained air (2.7%), highest porosity (27%), and lowest unit 

weight (1,920 kg/m
3
). The air entrainment, porosity, and unit weight were similar between 

PG-N2 and PG-S1, consequently those mixtures had similar freeze thaw durability failing at 

229 cycles. 

 

Figure 30. Freeze-thaw durability of the pea gravel mixtures 
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Conclusions 

From this study the following conclusions can be made: 

1. Air entrainment increased the paste volume and improved workability of pervious 

concrete, thus reducing overall porosity and increasing density. The effect of air 

entrainment on porosity and workability is more pronounced for concrete made with 

the rounded pea gravel aggregate than that in concrete made with the angular crushed 

limestone. 

2. Concrete having lower porosity and consequently higher unit weight, displayed 

higher strength, better freeze-thaw resistance, and lower permeability. 

3. The RapidAir test results indicated that even without air entrainment pervious 

concrete still had spacing factor values less than 0.2 mm (200 μm). This implies that 

it is the improved density resulting from air entrainment which enhanced freeze-thaw 

resistance. 

4. The recommended dosage of synthetic air entrainer produced equivalent contents of 

entrained air as the double recommended dosage of the natural air entrainer. Synthetic 

air entrainer produced higher amounts of air entrainment that the natural air entrainer 

at a given dosage. The entrained air void structure of pervious concrete can be 

characterized using the RapidAir device. 

Acknowledgements 

This study was sponsored by the Center for Portland Cement Concrete Pavement 

Technology at Iowa State University through the Sponsored Research Fund by Federal 

Highway Administration and the RMC Research and Education Foundation.  Various 

admixtures were donated by Master Builders.  The cement was donated by LaFarge and the 

aggregate by Hallett Materials.  The opinions, findings and conclusions presented here are 

those of the authors and do not necessarily reflect those of the research sponsors. 

References 

[1] Kosmatka, S.H., Kerkhoff, B., and Panarese, W.C. (2002) Design and Control of 

Concrete Mixtures. EB001. Skokie, IL: Portland Cement Association. 

 



www.manaraa.com

64 

[2] National Ready Mixed Concrete Association (NRMCA). (2005) “Text Reference for 

Pervious Concrete Contractor Certification.” NRMCA Publication #2PPCRT, Silver Spring, 

MD. 

 

[3] Concrete Experts International (2002) User’s Manual RapidAir 457, Vedbæk, Denmark. 

www.concreteexperts.com 

 

[4] Jakobsen, U.H., Pade, C., Thaulow, N., Brown, D., Sahu, S., Magnusson, O., De Buck, 

S., and De Schutter, G. (2006) Automated air void analysis of hardened concrete – a Round 

Robin study. Cement and Concrete Research, V. 36, pp. 1444-1452. 

 

[5] Schaefer, V.R., Wang, K., Suleiman, M.T., and Kevern, J. (2006) “Mix Design 

Development for Pervious Concrete in Cold Weather Climates.” A Report from the National 

Concrete Pavement Technology Center, Ames, IA: Iowa State University. 

 

[6] ASTM, Standard C-192, “Standard Practice for Making and Curing Concrete Test 

Specimens in the Laboratory,” Annual Book of ASTM Standards Vol. 4(2), ASTM 

International, West Conshohocken, PA: ASTM International, 2003. 

 

[7] Montes, F., Valavala, S., and Haselbach, L.M. (2005) A New Test Method for Porosity 

Measurements of Portland Cement Pervious Concrete. Journal of ASTM International, V.2, 

No. 1, pp.13. 

 

[8] ASTM, Standard C-39, “Standard Test Method for Compressive Strength of Cylindrical 

Concrete Specimens,” Annual Book of ASTM Standards Vol. 4(2), ASTM International, 

West Conshohocken, PA: ASTM International, 2003. 

 

[9] ASTM, Standard C-496, “Standard Test Method for Splitting Tensile Strength of 

Cylindrical Concrete Specimens,” Annual Book of ASTM Standards Vol. 4(2), ASTM 

International, West Conshohocken, PA: ASTM International, 2003. 

 

[10] Kevern, J. T., “Mix Design Development for Portland Cement Pervious Concrete in 

Cold Weather Climates.” M.S. Thesis. Ames, IA: Iowa State University, 2006. 

 

[11] ASTM, Standard C-666, “Standard Test Method for Resistance of Concrete to Rapid 

Freezing and Thawing,” Annual Book of ASTM Standards Vol. 4(2), ASTM International, 

West Conshohocken, PA: ASTM International, 2003. 

 

[12] ASTM, Standard C-457, “Standard Test Method for Microscopical Determination of 

Parameters of the Air-Void System in Hardened Concrete,” Annual Book of ASTM Standards 

Vol. 4(2), ASTM International, West Conshohocken, PA: ASTM International, 1998. 

 

[13] Taylor, P.C., Kosmatka, S.H., Voigt, J.F., et al. (2006) “Integrated Materials and 

Construction Practices for Concrete Pavement: A State-of-the-Practice Manual.” A Report 

from the National Concrete Pavement Technology Center and Federal Highway 



www.manaraa.com

65 

Administration, Ames, IA: Iowa State University. [FHWA Publication No. HIF-07-004] 

[www.cptechcenter.org/publications/imcp/]



www.manaraa.com

66 

CHAPTER 5. EVALUATION OF PERVIOUS CONCRETE 

WORKABILITY USING GYRATORY COMPACTION 

A paper submitted to the ASCE Journal of Materials in Civil Engineering. 

John T. Kevern, Kejin Wang, and Vernon R. Schaefer 

 

Abstract: 

The increased use of Portland Cement Pervious Concrete (PCPC) across the United 

States (U.S.) has prompted various entities to begin the process of standardized test 

techniques. A major issue with placing PCPC is the inconsistencies in workability between 

batches, countered by tempering the mixture at the job site, which is subjective to human 

interpretation. Determining workability of pervious concrete will allow consistent placement 

between batches and will allow mixtures to be designed for particular compaction methods. 

Slump loss and the effect of admixtures on workability and placing time will be quantified 

and the overall placement quality will improve. This paper describes research performed to 

allow unbiased sample preparation and workability determination using gyratory compaction. 

The effect of binder content and water to cement ratio were studied along with the plastic 

concrete behavior with increased mixing time to simulate field conditions. The results show 

that gyratory compaction is able to produce PCPC specimens to design void content or unit 

weight. Observation of the compaction curve defines both the initial concrete workability but 

also the resistance of the mixture to further compaction and values are presented for 

acceptable ranges. (187 words) 

CE Database Subject Headings: Concrete, Concrete Construction, Concrete Pavements, Concrete Technology, 

Porous Pavements, Permeability, Porous Materials, Stormwater Management, Best Management Practice, 

Compaction 

Introduction 

Portland Cement Pervious Concrete (PCPC) mixture designs that have excellent 

performance in the lab may stiffen during transport resulting in poor compaction, requiring 

additional water at the project. Addition of water at the job site increases water-to-cement 
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ratio (w/c), reducing the concrete strength and durability. Many practitioners of pervious 

concrete have experienced instances when principles from traditional concrete are applied to 

pervious, resulting in a less-than optimal final product. To date, determining the workability 

of pervious concrete has been considered an art form, since the conventional slump test does 

not provide useful information for such stiff concrete. The current method is to evaluate the 

concrete ability to form a ball with the plastic pervious concrete (Tennis et al. 2004). This 

method is impossible to specify due to the lack of quantifiable values such as the force to 

compact by hand. A more scientific method of workability determination is required if PCPC 

is to progress to large-scale parking areas and surface overlays. 

Pervious concrete is designed to transport stormwater into the underlying layers 

through a series of interconnected voids, while providing the designed load-carrying 

capacity, typically for parking areas. The interconnected voids are produced from a balance 

between aggregate gradation and binder content. In the concrete mixture design, the objective 

is to provide a sufficient amount of voids to infiltrate the designed stormwater intensity. 

There is a direct relationship between voids and compressive strength, where lower voids 

produce more intraparticle contact and consequently higher load-carrying capacities 

(Schaefer et al. 2006). The void content (porosity) of the plastic and hardened pervious 

concrete can be determined from the unit weight. Determination of plastic workability 

becomes paramount since the required parameters (permeability and strength) are based on 

unit weight, which is achieved through proper placement. A highly workable mixture 

requires less compaction energy to achieve higher unit weight than a stiff mixture. By 

quantifying pervious concrete workability, mixtures can be designed to produce certain void 

contents using specified compaction methods and the workability can be verified and 

adjusted accordingly before placement.    

  In the present study, a modified Superpave Gyratory Compactor (SGC) test method is 

employed to characterize the workability of pervious concrete. In this test, pervious concrete 

samples were produced using a SGC that allows for simulating various field compaction 

conditions. Workability of the concrete is then defined by the unit weight to number of 

gyration relation curve. A matrix of concrete mixtures that consists of various water-to-

binder ratios (w/b) and cement contents were tested. The effect of mixing time on concrete 
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workability was also evaluated so as to identify “slump loss” of field concrete. The results 

show the SGC is able to produce consistent pervious concrete specimens and the output of 

the test method well quantifies the workability and compactibility of pervious concrete. The 

discussion includes a range of suggested values to allow design and verification of 

production pervious concrete workability. 

Field Compaction Methods and Requirements for Pervious Concrete Workability 

There are two basic methods of pervious concrete placement/compaction currently 

employed in the United States (U.S.): 1) riser strip method and 2) roller-screed method. 

The riser strip method is commonly used in the southern U.S. and involves riser strips placed 

above the forms. Concrete is roughly finished to the riser height, and then the risers are 

removed, and a weighed roller is used to compact to final height (Figure 31a). 

 
                                    (a)                                                                             (b) 

Figure 31. Compaction of pervious concrete 

In the roller-screed method, which is gaining a more wide-spread use, an electrically 

or hydraulically driven roller-screed is used to accomplish both the compaction and finishing 

steps. As shown in Figure 31b, the steel tube screed rotates opposite to the direction of 

placement. Roller-screeds can either be filled with sand or water, commonly 30 kg/m (20 plf) 

or 18 kg/m (12 plf), respectively. The compaction pressure applied to the fresh concrete is a 

function of the weight of the roller and the contact area between the roller and the pavement. 

At a low level of compaction, the roller to concrete contact area is large, and decreases with 

the level of compaction. Figure 32 shows a typical contact pattern between a weighted roller 

and the pavement. During the initial pass the contact area is large (circumference, C/8) and 

decreases for subsequent passes (C/16 to C/32), which produce low compaction pressure 

during the initial pass and increase compaction pressure for later passes. 
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Figure 32. Roller contact area 

To appropriately determine compaction energy, the contact area must be considered. 

The contact pressure for two common cases for a roller-screed and a typical weighted lawn-

roller are shown in Table 15. Compaction pressures range from 2.9 kPa (0.4 psi) for the 

water-filled roller-screed during the initial pass, to 40 kPa (5.8 psi) for the weighted roller 

during later passes. For comparison, the pressure exerted by a 90.7 kg (200 lb) person is 

about 11.7 kPa (1.7 psi). Since the compaction applied to the field pervious concrete 

pavement is low, modification of the SGC commonly used for conventional asphalt concrete 

pavement is required so as to produce compaction response to more closely simulate field 

conditions. 

Table 15. Range of roller compaction pressure 

Roller Type 
Diameter 

Linear 

Weight 

Pressure 

C/8 C/16 C/32 

cm (in.) kg/m (lb/ft) kPa (psi) kPa (psi) kPa (psi) 

Weighted w/water 46 (18) 182 (122) 9.7 (1.4) 20.0 (2.9) 40.0 (5.8) 

Screed w/water 15 (6) 18 (12) 2.9 (0.4) 5.9 (0.85) 11.7 (1.7) 

Screed w/sand 15 (6) 30 (20) 4.9 (0.7) 9.7 (1.4) 19.5 (2.8) 

 

It is well-understood that gyratory compactors better simulate the type of compaction 

utilized by the asphalt industry, primarily steel drum and pneumatic compaction (AI 2001). 

Since pervious concrete is loosely placed and then finished/compacted with either a weighted 

drum or roller-screed, the use of a gyratory compactor is appropriate to simulate field 

conditions. Normal conditions for Superpave asphalt design require a 600 kPa (87 psi) load 

for laboratory compaction to simulate field compaction. For this study, a gyratory compactor 
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was modified to achieve compactive effort of 60 kPa (8.7 psi), within a tolerance of 2 kPa 

(0.3 psi), for 150mm (6 in.) diameter samples.  

Gyratory Test Method Development 

Determination of Appropriate Compaction Pressure 

A simple baseline pervious mixture was selected to determine if the lowest amount of 

compaction energy (60 kPa), provided by the available SGC, was capable for producing the 

Design Void Content (DVC) as determined by the absolute volume mixture proportions. The 

baseline mixture contained single-sized 4.75mm (No. 4) river gravel, Type II Portland 

cement, and a water to cement ratio of 0.27. Using the mixture proportions shown in Table 

16, the DVC was determined as 20% at 1,990 kg/m
3 

(125 pcf). 

Table 16. Baseline mixture proportions 

Material 

Specific 

Gravity Amount Volume 

    kg/m
3
 (pcf) % 

River Gravel 2.60 1,570  (98) 60.6 

Type II Cement 3.15 330  (21) 10.5 

Water (0.27) 1.00 90  (6) 8.9 

DVC   0 20.0 

 

In order to determine the pressure required for producing DVC of 20% at 100 

gyrations, the baseline mixture (Table 16) was compacted in 150 mm (6 in.) diameter molds 

using 60 kPa, 120 kPa, 180 kPa, and 240 kPa. The ratio of the unit weight at N gyrations to 

the unit weight at the DVC is defined as the apparent Degree of Compaction (DoC). The test 

results show that the baseline mixture with 60 kPa produced 100.2% DoC at 19.84% voids, 

120 kPa 100.5% DoC at 19.61% voids, 180 kPa 101.3% DoC at 19.02% voids, and 240 kPa 

101.6% DoC at 18.70% voids. Since the compaction pressure applied in the field is less than 

60 kPa (Table 1), the lowest pressure of 60kPa, slightly higher than the pressure (57 kPa) 

capably provided by the available SGC, was selected for the subsequent design compaction 

level. 
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Determination of the Maximum Number of Gyrations 

Previous research using gyratory compaction on roller-compacted concrete (RCC) 

has shown that 100 gyrations is sufficient to obtain uniform and complete compaction (Amer 

et al. 2003). Figure 33 shows the gyratory response of the baseline pervious samples 

compacted at 60 kPa for 20, 50, and 100 gyrations and Figure 34 shows the height difference 

of the samples. At 100 gyrations, the change in slope of the compaction curve is was small, 

nearing the maximum asymptote. Consequently, 100 gyrations were selected as the upper 

limit for compaction of the pervious specimens. 

Samples produced from the SGC have a uniform level of compaction across the 

specimens, eliminating the variability created when samples are produced using some type of 

rodding or jigging procedure. 
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Figure 33. Degree of compaction curve of the baseline mixture 

 
Figure 34. Samples compacted at different gyrations 
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Determination of Workability Using the Gyratory Compaction Curve 

The compaction curve produced by the SGC (see Figure 35) has two distinct portions; 

1) the initial phase characterized by a steep slope where excess air voids are removed under 

the initial, short-term compaction and 2) the final phase characterized by a small change in 

slope resulting from particle re-arrangement under further applied compaction. The initial 

phase is dependent primarily on intrinsic workability of a particular mixture or the self-

compacting ability. The final phase is controlled by the resistance of a particular mixture to 

additional compaction energy. Since the goal of pervious concrete placement is a design in-

situ void content (DVC) and unit weight, the same outcome can be achieved by either a 

highly workable mixture or additional compaction energy. A very fluid mixture design may 

require little to no compaction after discharge, but a stiff mixture design may require 

compaction with a weighted roller. Both mixtures result in the same voids, although achieved 

by two different mechanisms, requiring the consideration of both components of the 

compaction curve.  

 In the asphalt industry the initial compaction level is calculated between six and eight 

gyrations, depending on the design traffic level (Stakston and Bahia 2003). The point of 

maximum curvature was determined as the boundary between workability and 

compactibility. When the point of maximum curvature was determined for the initial project 

variables, the inflection point occurred between seven and nine gyrations with the most 

occurring at eight gyrations (Table 17). For pervious concrete specimens, the compaction at 

eight gyrations is slightly greater than 90% of DVC. Consequently, eight gyrations was 

selected to define initial workability for pervious concrete. 
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Table 17. Determination of maximum curvature 

binder/aggregate w/c Inflection point 

21 0.25 8 

21 0.27 8 

21 0.29 8 

21 0.31 7 

10 0.27 8 

15 0.27 8 

19 0.27 9 

21 0.27 8 

23 0.27 8 

25 0.27 9 

 avg 8.10 

  std dev 0.57 

 

The unit weight and DoC at zero gyrations were observed to have a large degree of 

variability resulting from the placement of the samples in the gyratory mold. Beginning at the 

first gyration, the compaction curve was controlled by the sample placement in the mold. In 

order to eliminate this variability, workability was defined after the first gyration. The area 

under the compaction curve from one to eight gyrations is termed the Workability Energy 

Index (WEI) and defines the inherent workability from little additional compaction, as shown 

in Figure 35. The final portion of the curve, representing compactibility, is defined as the 

area under the compaction curve from eight gyrations to the DVC or 100 gyrations, 

whichever occurs first, to the compaction level achieved at eight gyrations. This value is 

termed the Compaction Densification Index (CDI) and indicates the practical amount of 

additional energy required to bring the mixture to the DVC, as shown in Figure 35. The 

combination of WEI and CDI is termed the placeability of a pervious concrete mixture. 
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Figure 35. Definition of the workability index parameters 

Evaluation of Gyratory Compaction on Pervious Concrete Specimens 

The relationship between unit weight and void ratio for pervious concrete is well understood 

(Schaefer et al. 2006, Kevern 2006). The SGC has the ability to provide plastic workability 

properties through the compaction output curve, in addition to producing unbiased hardened 

samples for quality control purposes. Samples produced using the baseline mixture, while 

determining appropriate pressure and number of gyrations, were tested for hardened unit 

weight, voids, and splitting tensile strength at 7-day according to ASTM C496 (1996). Voids 

were tested according to the procedure developed by Montes et al. (2005). Unit weight of 

fresh concrete, or the plastic unit weight, was determined from the SGC compaction curve 

and then used to calculate voids. The properties of samples produced from the baseline 

mixture are shown in Table 18. The void ratios ranged from 19% to 30%, with up to a 6% 

difference between the plastic voids and those determined from oven-dry samples.   
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Table 18. Gyratory-compacted sample properties (baseline mixture) 

Gyrations Pressure 

Measured Plastic 

Unit Weight 

Calculated 

Plastic 

Voids 

Measured 

Oven Dry Unit 

Weight 

Measure

d Oven 

Dry 

Voids 

7-day 

Splitting 

Tensile 

Strength  

  kPa (psi) kg/m
3
 (pcf) (%) kg/m

3
 (pcf) (%) MPa(psi) 

100 60 (8.7) 2,000 (125) 19.9 1,940 (121) 25.1 1.80 (260) 

100 120 (17.4) 2,020 (126) 19.0 1,940 (121) 25.1 1.85 (265) 

100 180 (26.1) 2,010 (125) 19.5 1,960 (122) 21.3 1.90 (275) 

100 240(34.8) 2,030 (127) 18.7 1,970 (123) 23.9 1.75 (255) 

4  60 (8.7) 1,750 (109) 30.0 1,690 (106) 36.5 1.00 (145) 

20 60 (8.7) 1,880 (117) 24.6 1,830 (114) 29.9 1.15 (170) 

25 60 (8.7) 1,870 (117) 25.1 1,800 (113) 31.2 1.35 (200) 

50 60 (8.7) 1,940 (121) 22.0 1,900 (118) 26.3 1.85 (270) 

150 60 (8.7) 1,990 (124) 20.4 1,940 (121) 24.5 1.50 (215) 

 

The relationship between voids and unit weight is shown in Figure 36 for both the 

plastic values calculated from the SGC and the measured oven dry values. As previously 

observed, the reduction in unit weight with increased voids is linear for samples of different 

compaction levels produced from the same mixture. The plastic unit weight was always 

higher, corresponding in lower voids, than that of the same samples tested in the oven dry 

state. The difference between calculated and measured voids decreased with increased 

compaction level. 
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Figure 36. Relationship between voids and unit weight of pervious concrete samples made with gyratory 

compaction 

Samples produced in the SGC have a diameter of 150mm (6 inches), which requires 

coring to produce compressive strength samples with the correct height to diameter aspect 
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ratio. The relationship between splitting tensile strength and compressive strength for 

pervious concrete is between 12% and 15% of the compressive strength (Schaefer et al. 

2006). Since the determination of splitting tensile strength allows for any diameter and length 

specimen, splitting tensile strength was selected to report strength. The samples were tested 

at 7-days and the relationship between voids and tensile strength is shown in Figure 37. The 

trendline has an R
2
 of 0.77 with the expected outcome of lower strength with increased voids. 

Tensile Strength = -0.06*voids + 3.27

R2 = 0.77
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Figure 37. Relationship between voids and splitting tensile strength 

Factors that Influence Pervious Concrete Workability 

The key factors in pervious concrete mixture design are the aggregate gradation, 

binder-to-aggregate ratio (b/a), and water-to-cementitious binder (w/b) ratio. In addition to 

the basic mixture design components, admixtures are often used to enhance workability and 

to extend the placing window. The mixture proportions used to evaluate gyratory workability 

all had a DVC of 20% and aggregate, binder, and water contents were adjusted accordingly. 

To evaluate the validity of the WEI and CDI indices, a variety of common pervious concrete 

mixture proportions were tested. Table 19 lists the project variables used to characterize 

workability behavior with time, effect of binder content, and water to cement ratio.  

Table 19. Project variables 

Variables          

Additional Mixing Time (min.)       0 15 30   

Binder Content (%) 10 19 21 23 25 

w/b 0.25 0.27 0.29 0.31  
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Effect of Binder Content 

Pervious concrete binder connects the aggregate pieces and transfer load throughout 

the pavement. Too little binder provides insufficient connected area for the required concrete 

strength and durability. On the other hand, too much binder fills in the concrete voids and 

does not allow the required permeability. The effect of the binder content on workability was 

evaluated using a mixture with a fixed w/b of 0.27. Table 20 provides the average 

workability and compactibility results for the various binder contents. 

Table 20. Gyratory results for pervious concrete with different binder contents 

w/b b/a (%) WEI CDI 

0.27 10 599 482 

 15 618 492 

 19 656 56 

 21 662 24 

 23 665 27 

  25 696 0 

 

Figure 8 shows the relationship between workability (Figure 38a), compactibility 

(Figure 38b), and binder content. Each point in the figure represents the average of three 

tests. The workability (WEI) increased linearly with increased binder and additional required 

compaction energy (CDI) decreased with increased binder content. In pervious concrete, the 

sufficiently wetted cementitious paste provides lubrication between the aggregate particles. 

While the workability continued to increase with increased binder content, there was a 

sudden drop in required compaction energy when enough cement paste was present to 

separate the aggregate particles and to provide lubrication, between b/a (0.15 to 0.19). 

WEI = 5.9334*b/a + 539.3
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                                          (a)                                                                         (b) 

Figure 38. Effect of binder-to-aggregate ratio on workability index parameters 
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The mixtures with b/a of 10% (WEI = 599) and 15% (WEI = 618) were similar to the 

mixtures commonly observed in the field. Any mixture having a further decrease in 

workability (WEI<600) would require remediation or rejection. Once the b/a increased to 

19% (WEI = 656), the workability had increased to a point where the mixture achieved DVC 

easily and especially for the 25% b/a (WEI = 696), which may result in self-consolidating 

concrete. The effect on compactibility was even more pronounced than WEI. The lower 

binder mixtures, b/a of 10% (CDI = 482) and 15% (CDI = 492), resisted compaction and 

required substantial compaction energy to achieve DVC. Again, once the b/a increased to 

19% (CDI = 56), the required compaction energy decreased and when b/a = 25%, no 

additional energy was required. The results suggest that a minimum WEI of 600 and CDI of 

450 may be appropriate for pervious concrete to have acceptable workability. 

Effect of water-to-binder ratio 

When pervious concrete arrives at a job site the workability is “evaluated” and if too 

dry, up to a half a gallon per cubic yard of water is added at a time to improve workability 

(NRMCA 2005). It is understood that more water generally improves workability, in either 

traditional or pervious concrete, but reduces overall performance (Kosmatka et al. 2002). 

Pervious concrete is produced in a very small window of water contents (approximately 0.27-

0.33). Too dry and the paste does not have enough cohesion to coat and join the aggregate 

particles together, while too wet and the paste drains away from the aggregate and clogs the 

water-carrying pores. The effect of water-to-binder ratio on the narrow range used for 

pervious concrete is shown in Figure 39. Each point in the figure represents the average of 

three tests. The workability (WEI) generally increased with increased w/b and required 

compaction energy (CDI) decreased with increased w/b with a large decrease in CDI between 

0.25 and 0.27. Similarly to the compactibility trend shown in the previous figure, a 

significant drop in required compaction energy occurred when the paste became sufficiently 

wetted and began lubricating the aggregate particles, between w/b (0.25 and 0.27). Visually, 

concrete at w/c = 0.25 was cement powder-coated aggregate particles and would not be 

considered concrete. While concrete at w/c=0.27 was cement paste-coated particles and had 

the consistency associated with pervious concrete. 
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                                         (a)                                                                          (b) 

Figure 39. Effect of w/b on workability and compactibility 

Since the mixtures were placed with typical w/b contents, the measured workability 

was high (WEI >600). The compactibility for all mixtures was less than CDI = 450 and 

typical for pervious concrete mixtures in the field, although the w/b = 0.25 had significantly 

higher CDI. Comparing the effect on workability of b/a and w/b, the WEI is influenced more 

significantly by binder content than by w/b. Workability increased with either increased 

binder or water content but, the required compaction energy dropped significantly when 

enough paste (cement and water) was present. 

Effect of Mixing Time 

The large amount of exposed surface area makes pervious concrete especially 

susceptible to “slump loss” with time. The effect of mixing time on placeability of pervious 

concrete has not been previously studied. Typical specifications allow concrete to be placed 

up to 90 minutes after batching or 150 revolutions in the ready mixed truck (ASTM C94 

2003). Highly workable pervious concrete mixtures produced in the lab are rarely 

comparable with the actual production. Therefore, the effect of mixing time on pervious 

concrete placeability was evaluated in the present study. Figure 40 shows the decrease in 

workability caused by additional mixing time for one example mixture #4RG-B19 and 0.27 

w/b, where T=1 indicates the sample was tested immediately after approximate 10 minute 

initial mixing, T=2 after 5-10 minutes waiting for the first sample to test and 15 minutes of 

additional mixing (about 30 minutes total mix time), and T=3 after an additional 15 minutes 

of mixing following sample T=2 testing (about one hour total mix time). It was observed that 

the DoC of the tested mixture at any given gyration decreased with mixing time (from T=1 to 
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T=3), indicating stiffening of the pervious concrete mixture. The initial slope was similar for 

a particular mixture observed at different mixing times.  
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Figure 40. Effect of mixing time on workability of baseline mixture 

The placeability for the various mixing times is shown in Figure 41. The initial case 

shows a highly workable mixture requiring little additional compaction to achieve DVC. 

After 30 minutes total time (T=2), the workability decreased and required compaction energy 

significantly increased. At one hour of total time (T=3) it was observed that the mixture had 

passed a placeability window and would be subject to rejection. The paste had lost the 

required metallic sheen and had started forming paste balls and leaving bare aggregate. 

 The large difference in workability and compactibility caused by time makes 

consistent placement of pervious concrete using a fixed compaction method difficult. A 

certain compaction and finishing method which produces DVC at T=1 will result in 

unacceptably high voids and low unit weight if applied to the same mixture at T=3. The 

effect on placeability of the maximum and minimum b/a and w/b caused by mixing time is 

shown in Figure 41. The effect on workability caused by mixing time was similar for all 

mixtures tested in either of the previous two phases. A relatively uniform decrease in 

workability occurred with increased mixing time. Required compaction energy increased 

regularly with mixing time for different binder contents with fixed water content. At a low 

w/b (0.25) and fixed cement content (0.21), the CDI increased when the mixing time 

increased from T=1 to T=2 but leveled off after T=2. At a high w/b (0.31), compactibility of 

the mixture remained low (CDI<100) for the periods of T=1 and T=2 but substantially 
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increased at T=3, and at the later time there was no difference in compactibility between the 

lowest and highest w/b samples. 
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Figure 41. Effect on placeability of mixing time 

The common reaction to improve placeability of pervious concrete is to increase the 

water content. Increased water content provides greater workability for all time periods 

although, does not provide increased compactibility at later times. To increase placeability at 

later ages, it is more beneficial to increase the binder content rather than water content. 

Classification of Pervious Concrete Placeability 

The identification of desired placeability parameters will allow pervious concrete mixtures to 

be designed better, taking into account compaction energy versus desired voids, and achieve 

quality control in the field. Based on the SGC test results discussed previously, guidelines for 

evaluating pervious concrete workability and compactibility are proposed in Table 21. 

Following the guidelines, mixtures can be designed and required to meet placeability 

requirements, increasing the consistency and quality of pervious concrete placements. 
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Table 21. Range of pervious concrete gyratory values 

Workability (WEI) 

Explanation Range 

Highly Workable > 640 

Acceptable Workability 640>WEI>600 

Poor Workability WEI<600 

  

Compactibility (CDI) 

Explanation Range 

Self-Consolidating CDI<50 

Normal Compaction Effort Required 50<CDI<450 

Considerable Additional Compaction Effort 

Required CDI>450 

Conclusions and Recommendations 

From this study the following conclusions can be made: 

1. The gyratory compaction allows consistent placement of pervious concrete samples to 

designed void contents, which removes the variability caused by existing pervious 

concrete placement methods used in the lab and field. 

2. The gyratory compaction curve defines workability (WEI) in the initial portion to eight 

gyrations and compactibility (CDI) from eight gyrations to the DVC or 100 gyrations. 

3. The workability (WEI) generally increased with increased w/b and required compaction 

energy (CDI) decreased with increased w/b. 

4. To increase concrete placeability, it is more beneficial to increase the binder content 

rather than the w/b. 

5. The effect of mixing time on placeability shows a significant decrease in workability 

causing a corresponding decrease in compactibility. 

6. Guidelines are developed to assist designing pervious concrete mixtures for specific 

compaction methods and to allow quantification of placeability. 

Future Research 

The determination of placeability indices for pervious concrete will allow 

quantification of the effects of various admixtures on pervious concrete behavior. 

Specifically, the ability of specialized admixtures to maintain mixture consistency over a 

typical period of time will be measured and compared. The effect of various cementitious 

materials on the workability and aggregate angularity and mixture improvement from sand 
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addition will be known. By designing a mixture for a specific void content and unit weight 

produced by a given compaction method at a known mixing time, the problems associated 

with inconsistent highly-variable pervious concrete mixtures can be eliminated. A greater 

level of QA/QC ability will allow pervious concrete to better transition from nitch markets to 

mainstream applications. 
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CHAPTER 6. EFFECT OF CURING REGIME ON PERVIOUS 

CONCRETE ABRASION RESISTANCE 

A paper submitted to the ASTM Journal of Testing and Evaluation 

John T. Kevern, Vernon R. Schaefer, and Kejin Wang 

Abstract 

The current method of curing pervious concrete is to cover with plastic for 7-days 

although, no studies have been performed to determine if that is sufficient or even required. 

This paper presents results of combinations of four different pervious concrete mixtures 

cured using six common curing methods. The surface abrasion of the concrete was tested 

using a rotary cutter device according to ASTM C944. The results show that a majority of the 

concrete abrasion resistance was improved with surface-applied curing compounds, although 

the surfaces covered with plastic sheets produced the lowest abrasion levels. A majority of 

the curing regimes also produced higher flexural strength than the control concrete. There 

was no significant difference observed in the strength between curing under plastic sheets for 

7-days or 28-days. Of the surface-applied curing compounds, the best abrasion resistance and 

highest strength concrete was that applied with soybean oil. The best abrasion resistance and 

highest strength overall was the mixture containing fly ash and cured under plastic for 28-

days. 

Introduction 

The recent increases in the requirements for stormwater management have moved 

many previously under-utilized best management practices to the forefront. Pervious 

pavements have been used in the Southern United States for many years but only in the last 

few years has the demand and research knowledge allowed successful commercial 

installations in Northern climates. The freeze-thaw durability of Portland Cement Pervious 

Concrete (PCPC) has been studied in the laboratory and the findings show that this aspect 

may not be as much of a concern as initially believed. When pervious concrete is applied to 

pavements in areas which undergo freeze-thaw, durability also refers to the surface abrasion 

resistance against snow clearing operations. If pervious concrete is to progress from parking 
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lot applications to low-volume and potentially high-volume applications, the pavement must 

be resistant to all aspects of cold weather maintenance.  

Concrete curing is required to maintain sufficient moisture to allow cement hydration 

and concrete microstructure development (Wang et al. 2006). Also, curing has been shown to 

impact concrete durability as well as concrete strength (ACI 2000). Many techniques exist to 

control moisture loss in traditional concrete, although most are not appropriate for pervious 

concrete. Because of the high porosity of pervious concrete, rapid loss of moisture from the 

fresh concrete due to evaporation can occur. Since the water-to-cement ratio (w/c) of the 

concrete is generally low, loss of moisture can result in rapid desiccation, low strength, and 

excessive surface raveling. Thus, curing is especially important for pervious concrete, 

because unlike traditional concrete, the bottom of the slab is exposed to air as well as the 

surface. On the other hand, protecting the surface with even a small measure, may provide 

enough protection to allow proper curing throughout. For PCPC, water misting or fogging 

washes the cement paste from the coated aggregate particles. Due to potential surface 

damage of the fresh concrete, wet burlap can not be applied until final set has been reached 

which results in excess surface desiccation. Liquid membrane-forming compounds prevent 

surface moisture loss but do nothing to prevent evaporation from within pervious concrete. 

Curing compounds are designed to prevent moisture loss from the surface of freshly placed 

concrete which presents an obstacle for proper pervious concrete curing.  

The current method of curing PCPC involves covering the fresh concrete with plastic 

sheets and allowing the pavement to cure for 7-days before removal of the plastic. In most 

cases the plastic sheets must be rolled onto a pipe for rapid application after placement and 

aggregate or sand bags must be used to seal the edges and prevent wind from ballooning 

under the plastic and drying the surface. Covering with plastic is the preferred method to cure 

pervious concrete but can be problematic and has not been compared with other standard 

methods. This study evaluated the effect of nine different curing methods or curing materials 

on pervious concrete properties, including flexural strength and surface abrasion resistance.  

Testing Procedures 

Flexural strength was determined using modulus of rupture of the beams tested at 28-

days according to ASTM C78 (2002). Once the samples were tested for modulus of rupture 
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the fractured pieces were tested for surface abrasion. Surface abrasion was determined 

according to ASTM C944 (1999), in which a constant load of 98 N (22 lbs) is applied 

through rotary cutter dressing wheels in contact with the sample surface for two minutes. The 

diameter of the circular abraded area is 80 mm (3.25 in.). The beams were first cleaned with 

a stiff-bristled brush and vacuumed on all sides to remove any loose materials. After each 

abrasion test, the beams were again brushed clean and vacuumed to remove loose debris. The 

mass loss between trials was recorded and a total of six abrasion tests were performed on 

each set of beams. Figure 42 shows the abrasion device with the shaft-mounted container for 

load calibration and abrasion head cutting device. The physical result of an abrasion test is 

shown in Figure 43 for a beam cured with the standard white-pigment curing compound. The 

left portion of the sample had not undergone testing while the tested portion is the exposed 

aggregate circular section on the right. The Abrasion Index (AI) was taken as the ratio of the 

average abraded mass loss for a particular sample divided by the average for the control 

mixture with no curing method. 

 

Figure 42. Abrasion apparatus and cutting head 
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Before testing After testingBefore testing After testing

 
Figure 43. Surface before and after abrasion 

After abrasion, three 75 mm (3 in.) core samples were extracted from each beam. The 

ends were then trimmed using a concrete slab saw to correct uneven surfaces and provide a 

uniform volume for porosity calculation. The porosity of the pervious concrete was 

determined by taking the difference in weight between a sample oven dry and submerged 

under water using Equation 1 (Park and Tia 2004) and the proposed procedure developed by 

Montes et al. (2005). 

)]100(%)
Vol

WW
([1P

w

12                                                                                              (1) 

Where:  

P      =  sample porosity, %. 

W1  =  weight under water, kg. 

W2  =  oven dry weight, kg. 

Vol =  volume of sample, cm
3
. 

ρw    =   density of water @ 21ºC, kg/cm
3 

 

After determining porosity, the concrete permeability was determined using a falling 

head permeability test apparatus (Kevern 2006).  A flexible sealing gum was used around the 

top perimeter of a sample to prevent water leakage along the sides of a sample.  The samples 

were then confined in a latex membrane and sealed in a rubber sleeve which was confined by 

adjustable hose clamps.  The average coefficient of permeability (k) was determined 

following Darcy’s law and assuming laminar flow (Kevern 2006). 
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Calibration of Abrasion Apparatus 

The strength and performance of pervious concrete is directly impacted by the in-situ 

density which is a factor of the mixture workability and compaction effort applied to the 

fresh concrete. It is well-understood that pervious concrete with high porosity and low unit 

weight has lower compressive strength and durability (surface particle raveling and freeze-

thaw resistance) than denser concrete with the same mixture proportions. Some degree of 

compaction variability occurs during field placement and the American Concrete Institute 

(ACI) recommends the concrete placement be within ± 80 kg/m
3
 (5 pcf) of the design unit 

weight (ACI 2006).  

Before determining the effect of curing method on surface abrasion, samples with the 

same mixture proportions were placed at three different densities to determine variability of 

surface abrasion within the allowable density variation. Based on previous research (Kevern 

et al. 2005, Schaefer et al. 2006, Kevern 2006), a control mixture design was selected which 

contained river gravel aggregate, small portion of additional sand, and 15% fly ash 

replacement for cement. The freeze-thaw durability of the concrete has been previously 

investigated and similar mixtures were installed for the Iowa water quality study pervious 

parking lot (Jones 2006).   

The mixture proportions for the initial study are shown in Table 22. The river (pea) gravel 

coarse aggregate had 97% passing the 9.5 mm (3/8 in.) sieve and 81% retained on the 12.7 

mm (No. 4) sieve (#4PG). Additionally, 5% fine aggregate by weight of coarse aggregate 

(S5) was included. The fine aggregate was river sand with a fineness modulus of 2.9. The 

cement was Type II, marketed as a Type I-II, and the amount of cementitious material was 

fixed at 21% by the weight of aggregate (B21). Class C fly ash replaced 15% of the Type II 

cement by weight (FA15). Therefore the control mixture was designated as #4PG-B21-

FA15-S5. 
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Table 22. Calibration mixture proportions 

Design Unit 

Weight, 

kg/m
3
 (pcf) 

Design Void 

Content 

(DVC), % 

CA FA PC Fly Ash w/c 

kg/m
3
 

(pcf) 

kg/m
3
 

(pcf) 

kg/m
3
 

(pcf) 

kg/m
3
 

(pcf) 

1,940 (121) 22.5 1,340 (85) 70 (4) 270 (17) 40 (2) 0.27 

1,870 (117) 25.0 1,400 (88) 70 (4) 280 (17) 40 (3) 0.27 

1,810 (113) 27.5 1,450 (91) 70 (5) 280 (18) 40 (3) 0.27 

 

The control mixture was placed at three density levels and cured under ideal 

laboratory conditions for 28-days (ASTM C192) and allowed to air dry 24 hours before 

abrasion testing. The results for the calibration specimens are shown in Figure 44 where the 

error bars represent the standard deviation for three replicate samples. While there was a 

slight decrease in average material abraded with increased density, 2.88g for the 1,810 kg/m
3
 

(113 pcf) sample to 2.58g for the 1,940 kg/m
3
 (121 pcf) sample, comparing the standard 

deviation between samples, there was no significant difference in abrasion within the range 

of allowable density. 
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Figure 44. Abrasion results for calibration specimens 

Field Trial Mixture Proportions 

The mixture proportions for the field trials were based on the previously described 

control mixture and shown in Table 23. Additional modified concrete mixtures included an 

integral crystalline water proofing agent added per manufacturer’s specification at 2% by 

weight of cementitious materials (X2) and the polypropylene fibers were added at 0.9 kg/m
3
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(1.5 pcy) or 0.1% by volume (F1.5). One mixture also included 100% Portland cement as the 

binder. 

Table 23. Mixture Proportions 

Mixture 

# 
Mixture ID 

CA FA PC Fly Ash Xypex C-1000 

w/c kg/m
3
 

(pcf) 

kg/m
3
 

(pcf) 

kg/m
3
 

(pcf) 

kg/m
3
 

(pcf) 

kg/m
3
       

(pcf) 

1 #4PG-B21-FA15-S5 (Control) 1,530 (91) 80 (5) 300 (19) 40 (3) - 0.27 

2 #4PG-B21-S5 1,530 (91) 80 (5) 340 (21) - - 0.27 

3 #4PG-B21-FA15-X2-S5 1,530 (91) 80 (5) 300 (19) 40 (3) 190 (0.5) 0.27 

4 #4PG-B21-FA15-S5-F1.5 1,530 (91) 80 (5) 300 (19) 40 (3) - 0.27 

 

Along with no curing method, five curing regimes were tested on the control mixture (Table 

24). The external curing regimes included cured with plastic sheets for 7-days and 28-days. 

Curing compounds were sprayed on the concrete at the manufacture’s recommended dosage 

rates and included, a standard white-pigment curing compound applied at 4.9 m
2
/l (200 

ft
2
/gal), a soybean oil emulsion curing compound applied at 4.9 m

2
/l (200 ft

2
/gal), and a non-

film forming evaporation retardant applied at 16.3 m
2
/l (800 ft

2
/gal). 

In addition to the control mixture, one mixture containing 100% Portland cement was 

cured with plastic sheets for 7-days, one mixture containing fibrillated polypropylene fibers 

was cured with plastic sheets for 7-days, and one mixture containing the internal crystalline 

water proofing agent and surface cured with the non-film forming evaporation retardant. The 

internal crystalline water proofing agent is a dry powder integrally mixed with the cement to 

reduce the permeability of the cement paste (Xypex 2000). It was thought the mechanism in 

reduction of permeability would help seal in moisture and provide a more complete cure. The 

non-film forming evaporation retardant is designed to pair with the crystalline water proofing 

agent. 
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Table 24. Curing Regimes 

Sample 

ID 

Mixture 

#
1
 

Curing 

Method 

A 1 None 

B 1 

Plastic 7-days C 2 

D 4 

E 1 Plastic 28-days 

F 1 Soybean Oil 

G 1 White Pigment 

H 1 Non-film evap. 

retardant I 3 
1
 See Table 23 

Sample Preparation and Curing 

The concrete was mixed according to ASTM C192 (2003) and the 150 mm x 150 mm 

x 525 mm (6 in. x 6 in. x 21 in.) beams were placed in order to simulate typical field 

placement and finishing operations. Two sample beam molds at a time were filled with fresh 

concrete using a shovel and rough finished to approximately 25 mm (1 in.) above the mold. 

An electrically-driven roller-screed was then used for final compaction and finishing as 

shown in Figure 45. The roller-screed rotates in opposite the direction to forward movement, 

which provides compaction and orients the coarse aggregate particles along the surface. 

Immediately after finishing, the samples were moved outside and the appropriate curing 

method applied. Figure 46 shows the samples before applying curing compound. Initially, the 

white-pigment and soybean oil emulsion look similar, but as the water evaporates from the 

soybean oil the oil penetrates into the concrete producing a slightly darker color than the 

control. 
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Figure 45. Finishing using a roller screed 

 
Figure 46. Fresh concrete with no curing compound 

The beams were demolded after 24 hours and transferred to a site designed to 

simulate field curing conditions. An area approximately 100 cm (42 in.) by 150 cm (60 in.) 

by 36 cm (14 in.) was excavated and filled with 20 cm (8 in.) of a drainable aggregate base 

(Figure 47). Beams were placed on the base and the edges filled with aggregate, as shown in 

Figure 48. After 28-days, the beams were removed and tested for tensile strength and 

abrasion.  
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Figure 47. Aggregate base at test location 

 
Figure 48. Initial beam curing 

All beams were cast and cured on July 12, 2006, when the high temperature was 26ºC 

(79ºF) and average wind speed was 7 kph (4.4 mph). The placing date was scheduled to 

represent extreme summer placing and curing conditions. During the first 7-days, which are 

critical to concrete curing, the average maximum air temperature was 32.3 ºC (90.1 ºF). The 

initial moisture deficit, potential evapotranspiration (ET) minus the actual precipitation, was 

4.57 cm (1.80 in.) and increased to 11.2 cm (4.41 in.) over the entire 28-day curing period. 

Even though the relative humidity was high (~75%), drying conditions were caused by a 

substantial imbalance between evaporation and precipitation. Table 25 provides the average 

climatic data for both the first 7-days and the entire curing period.  
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Table 25. Climatic data for curing duration (ISU 2006) 

  First 7-days Entire 28-days 

Avg. Max Air 

Temp, ºC (ºF) 32.3 (90.1) 30.2 (86.4) 

Avg. Min. Air 

Temp, ºC (ºF) 18.8 (65.9) 19.1 (66.3) 

Avg. 4" soil temp, 

ºC (ºF) 28.8 (83.9) 28.0 (82.4) 

Avg. Max Wind 

speed, kph (mph) 24.6 (15.3) 23.7 (14.7) 

Avg. Wind 

Speed, kph (mph) 9.0 (5.6) 8.7 (5.4) 

Precipitation, cm 

(in.) 0.13 (0.05) 5.21 (2.05) 

Potential ET, cm 

(in.) 4.70 (1.85) 16.41 (6.46) 

Relative 

Humidity (%) 75.4 76.7 

Results and Discussion 

The soybean oil emulsion, when first applied, was milky white in color and as the 

water evaporated, the oil penetrated the concrete surface. After one day, the only indication 

of application was a slightly darker concrete color. The non-film forming evaporation 

retardant was diluted with water according to the manufacture’s specifications and surface 

applied. The consistency was similar to water and a majority of the curing compound 

permeated the sample whereas, the white pigment and soybean oil coated more of the surface 

particles. 

The control mixture design (Mixture #1) was placed in 18 beams, finished two at a 

time, and then surface treatments were randomly applied, the modified mixture designs 

(Mixtures #2, #3, and #4) were also placed at that time. Results of the concrete flexural 

strength along with porosity and unit weight are shown in Table 26. The unit weight and 

porosity were determined from core samples extracted from the beams after MOR testing and 

represent an average of three test specimens per beam and the tensile strength from two 

beams. The core samples had a diameter of 75 mm (3 in.) and an approximate length of 150 

mm (6 in.). The porosity values ranged from 17.5% to 23.1% for the control mixture 

(samples A, B, E, F, G, and H) and increased to 27.3% for the mixture containing fibers (D). 

Tensile strength followed a similar trend to the porosity, ranging from 1.10 MPa (162 psi) to 
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2.40 kPa (345 psi). The range of unit weight values for Mixture #1 were within the bounded 

variability evaluated during the calibration phase. Therefore, any differences in abrasion can 

be attributed to curing effects and not variability in unit weight.  

Table 26. Beam test results 

Sample 

ID 

Mixture 

ID #
1
 

Curing 

Method 

Beam 

Porosity 

Beam Unit 

Weight 

Flexural 

Strength  

(%) kg/m
3
 (pcf) MPa (psi) 

A 1 None 23.1 1,820 (114) 1.80 (264) 

B 1 

Plastic 7-days 

17.5 1,910 (120) 2.35 (344) 

C 2 22.9 1,780 (111) 1.95 (286) 

D 4 27.3 1,830 (114) 2.20 (319) 

E 1 Plastic 28-days 17.8 1,930 (121) 2.40 (345) 

F 1 Soybean Oil 21.3 1,865 (117) 1.95 (286) 

G 1 White Pigment 16.7 1,890 (116) 1.70 (244) 

H 1 Non-film evap. 

retardant 

19.7 1,820 (113) 1.90 (273) 

I 3 21.5 1,7501 (109) 1.10 (162) 
1
 See Table 23 

The flexural strength for the control mixture with no curing method was 1.80 MPa 

(264 psi). The mixtures covered in plastic had the highest strength, with the greatest increase 

over the control for the beams cured under plastic for 28 days. The maximum tensile strength 

was 2.40 MPa (345 psi) produced by the specimens cured under plastic for 28-days. 

However, there was only a slight increase in tensile strength between the samples cured 

under plastic for 7-days (2.35 kPa, 344 psi) and 28-days (2.40 kPa, 345 psi). Of the surface-

applied curing methods, the soybean oil emulsion produced the greatest increase in strength 

over the control at 1.95 MPa (286 psi).  

The concrete abrasion results for the control mixture cured under different conditions 

(samples A, B, E, F, G, and H) are shown in Figure 49, where an abrasion index of 100% 

represents the control mixture design allowed to cure in the field without any internal or 

surface-applied curing methods (sample A). A majority of mass loss was paste removed from 

the aggregate surface followed by abrasion of the aggregate with occasional removal of 

individual whole aggregate pieces. The average abrasion for the control mixture (A) was 

7.37g (0.02 lb) per test. The mixtures cured under plastic had the best abrasion resistance 

between 55% (E) and 64% (B) of the control. Of the surface applied treatments, the soybean 

oil emulsion (F) had the best abrasion index at 82%, followed by the standard white pigment 

(G) at 86%, and non-film forming evaporation retardant (H) at 91%. 
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Figure 49. Effect of curing regime on control concrete mixture properties  

Of the modified mixtures cured under plastic for 7-days, the only mixture that 

produced a significant decrease in strength was the internal crystalline water proofing agent 

with the non-film forming evaporation retardant (I), which reduced flexural strength by 40% 

from the control. The mixture containing fibers and cured under plastic for 7-days (D) 

produced an increase in flexural strength of 21% over the control, even though the unit 

weight was lower corresponding in a higher porosity. 

The concrete abrasion testing results for the uncured control (A) along with the 

modified mixture designs (samples C, D, and I) are shown in Figure 50. When cured under 

plastic for 7-days, the mixture containing 100% Portland cement (C) had slightly better 

abrasion resistance than the mixture containing 15% fly ash (B) although, the durability 

increased for the fly ash mixture when cured under plastic for 28-days (E), as compared to 

samples (C) and (B). The mixture containing fibers (D) had similar abrasion to the control 

mixture (A), although the porosity was 7.9% higher than the average for the control mixtures. 

The lowest performing mixture contained the internal crystalline water proofing agent with 

the surface-applied non-film forming evaporation retardant (I) and had the highest AI at 219. 
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Figure 50. Modified mixture response to curing regime 

Conclusions and Recommendations 

From this study, the following conclusions and recommendations can be made. 

o The samples cured under plastic had the best abrasion resistance and highest tensile 

strength. There was not a significant difference in tensile strength between samples cured 

under plastic for 7 or 28 days, although abrasion resistance did increase with covered 

curing time.  

o Soybean oil has the potential to be used as an effective curing compound. In this study, 

the soybean oil emulsion produced the best surface durability and increase in tensile 

strength of the surface-applied curing agents. 

o The addition of fibers has the potential to reduce surface abrasion and increase tensile 

strength while potentially increasing porosity and permeability. The “birds nest effect” 

caused by the fibers increased the porosity by 7.9% and yet produced a tensile increase of 

21% over the control without significantly impacting surface abrasion. 

o The rotary-cutter surface abrasion ASTM C944 method has the ability to differentiate 

between curing methods, allowing relative surface durability comparisons. Additional 

research is suggested to compare the abrasion of different aggregate types and to 

correlate with field conditions and behavior. 
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Future Research 

Research on use of soybean oil as a curing compound for concrete is limited. The 

ability of the soybean oil to penetrate the concrete surface and reduce abrasion suggests that 

soybean oil may be an effective measure for protecting traditional concrete against deicers.  

 Since the fibers caused a substantial increase in porosity while increasing flexural 

strength and not impacting abrasion resistance, this suggests that mixtures containing fibers 

when compared to those without, at the same porosity, may have increased abrasion 

resistance. More research is required to more completely determine the effects of fibers on 

surface durability. 
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CHAPTER 7. GENERAL CONCLUSIONS 

Recent stormwater mandates implemented by the U.S. EPA have created interest for 

pervious concrete in freeze-thaw climates. While the material components are similar to 

conventional concrete, the idiosyncratic behavior required revaluating material effects and 

relationships. Many different factors influence the performance of conventional concrete and 

these factors also affect pervious concrete although limited data exists to support observed 

and expected responses.  

The most crucial factors include the specific effect on freeze-thaw durability caused 

by the coarse aggregate type. Since the volume of paste in a pervious concrete system is 

much less than traditional concrete and exposure conditions much more severe, aggregate 

durability criteria must be determined for this specific application. The more extreme 

exposure conditions also require investigating the effect of air entrainment on the concrete 

mortar. Air entrainment improves freeze-thaw durability in conventional concrete but to date 

has yet to be evaluated in pervious concrete. In addition to mixture properties, construction 

practices must be modified to suit pervious concrete. While the workability of conventional 

concrete can be simply checked using a standard slump cone, no method currently exists to 

determine the workability of pervious concrete. However, workability of pervious concrete 

influences the ease of placement and density, which also controls the yield and ultimate 

durability. Determining pervious concrete workability will allow more consistency between 

placements and help quantify the effect various mixture components have on the fresh 

mixture behavior. Due to it’s very low water-to-cement ratio (~0.30) curing of pervious 

concrete is particularly important. Pervious concrete is currently cured under plastic instead 

of using a conventional curing compound. No research has previously been performed to 

evaluate the effect various common curing methods have on strength and durability. By 

studying the important issues, consistency and durability can be improved and baseline 

values established for future research. 

This dissertation included a selection of papers encompassing a variety of important 

aspects in pervious concrete research, all to improve pervious concrete durability. The papers 

include 1) The effect of aggregate type on the freeze-thaw durability of pervious concrete, 2) 
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A novel approach to characterize entrained air content in pervious concrete, 3) Effect of 

curing regime on pervious concrete abrasion resistance, and 4) Evaluation of pervious 

concrete workability using gyratory compaction.  

Summary of The Effect of Aggregate Type on the Freeze-Thaw Durability of Pervious 

Concrete 

 Preliminary results indicated that certain types of aggregate approved for use in 

traditional concrete experienced premature freeze-thaw deterioration when used in pervious 

concrete. Pervious concrete specimens were placed using coarse aggregate samples obtained 

from across the U.S. and Canada. A full complement of tests were performed on the 

aggregate and the concrete including freeze-thaw durability using the ASTM C666A, fully 

saturated procedure.  

 Results showed that generally a narrow range of gradations were used for pervious 

concrete aggregate in the U.S. Combination of the as-received gradations along with known 

beneficial amounts of additional fine aggregate allowed the creation of aggregate gradation 

criteria for pervious concrete. Of the aggregate specific properties, the natural aggregate 

density or Unrodded Unit Weight (URUW) controlled the resulting concrete density. 

Aggregate absorption was the most significant influence on concrete freeze-thaw durability. 

The average aggregate absorption for mixtures with acceptable durability was 0.82%. 

Concrete with acceptable freeze-thaw durability had durability factors greater than 37% 

using the 60% relative dynamic modulus, which had similar response to durability factors 

greater than 97% as determined using mass loss criteria. Now that general aggregate 

requirements have been established, a mixture proportioning criteria can be developed. 

Summary of A Novel Approach to Characterize Entrained Air Content in Pervious 

Concrete 

 Entrained air content is a standard property tested on conventional concrete. The 

entrained air provides workability, cost savings, and most importantly improved freeze-thaw 

durability. Freeze-thaw durability of pervious concrete is a concern but the open structure of 

the cement paste-coated aggregate particles does not allow entrained air determination using 

the typical methods.  Samples were placed using several dosage rates and types of air 
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entraining admixtures on mixtures produced with two aggregate types. Characterization of 

the entrained air system was performed using a RapidAir 457 device which automates the 

ASTM C457 petrographic analysis. Freeze-thaw durability testing was performed on the 

samples using the ASTM C666A, fully saturated procedure. 

 Air entrainment increased the paste volume and improved workability, reducing the 

porosity and increasing density. The effect on workability of the air entrainment was more 

pronounced for a rounded river gravel aggregate than an angular limestone. Concrete with 

greater air entrainment and higher density had better freeze-thaw durability. A double dosage 

of the natural air entraining agent produced similar effects as the recommended dosage of the 

synthetic air entrainer. The RapidAir device was able to measure and quantify the amount of 

entrained air content in pervious concrete and distinguished between entrained air and larger 

water-permeable voids. The results suggest that air entraining agent be included in all 

pervious concrete mixtures for enhanced freeze-thaw durability and workability 

improvement. 

Summary of Evaluation of Pervious Concrete Workability using Gyratory Compaction 

 The ultimate goal of a pervious concrete placement is a pavement with a smooth 

surface with enough porosity to infiltrate the required stormwater intensity, and enough 

strength for long-term durability. These requirements are all directly related to the concrete 

unit weight which is controlled by workability and compactive effort. Workability 

determination for conventional concrete is identified using a standard slump cone test, which 

does not yield useful data for the very stiff pervious concrete mixtures. Also, the design unit 

weight can be achieved either by a workable mixture or applying additional compaction 

energy to a very stiff mixture requiring two components to measure the fresh concrete 

workability behavior. Since pervious concrete is most often compacted using some type of 

roller and gyratory compaction simulates the kneading compaction from a roller, an asphalt 

gyratory compaction device was utilized for pervious concrete workability. However, typical 

asphalt compaction pressure does not represent the amount of energy applied by pervious 

concrete operations so the device was modified for a much lower pressure. Evaluation of the 

density output data produced the Workability Energy Index (WEI) which is the mixture 

consolidation behavior under it’s self-weight and the Compaction Densification Index (CDI) 
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which represents the amount of additional energy required to achieve the Design Void 

Content (DVC). Samples were produced using the modified gyratory compactor and the 

effect on the workability parameters evaluated for binder content, water-to-cement ratio, and 

mixing time. Ranges of values were provided to define the mixture behavior. 

 The modified gyratory compactor produced specimens to the DVC for splitting 

cylinder tensile testing. Observation of the compaction output curve allowed defining both 

workability and compactibility criteria. Binder content had the greatest effect on the 

workability indices while water-to-cement ratio did not have as significant an effect in the 

range of commonly used water contents. Workability decreases with increased mixing time 

while the required compaction energy increases. Quantification of pervious concrete 

workability will allow determination of admixture effectiveness and allow tailoring mixture 

behavior for particular aggregate types and placement situations.  

Summary of Evaluation of Curing Regime on Pervious Concrete Abrasion Resistance 

 Moisture loss in conventional concrete occurs at the surface and exposed edges, 

consequently chemical curing compounds applied to the surface prevent moisture loss and 

drying. Due to the nature of pervious concrete structure all portions of the slab are exposed to 

air, that coupled with the very low water-to-cement ratio means proper curing is even more 

crucial to long-term durability then typical concrete. Typically pervious concrete is cured 

under plastic for 7-days time, after which the site is opened to traffic. Until now, no study 

had been performed to evaluate which curing method was the most appropriate and provide 

test results. For this study, concrete beams were placed and randomly assigned a curing 

treatment. Flexural strengths and surface abrasion using the ASTM C944 rotary cutter 

method were used. Along with the control mixture, beams were also placed with other 

common mixture design components. The curing methods employed included no curing, 

cured under plastic for 7 and 28 days, white pigment, soybean oil, and a propriety compound. 

The specimens were then cured outside during July to represent the highest moisture loss 

possible. 

 Results showed that samples cured under plastic had the highest flexural strength and 

abrasion resistance. Of the surface-applied curing compounds, the soybean oil emulsion had 

the best performance. For the different mixtures cured under plastic for 7-days, the straight 
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Portland cement mixture had lower abrasion than samples containing 15% replacement of fly 

ash for cement.  Although the mixture containing polypropylene fibers had higher porosity 

than the control, abrasion resistance was similar. Abrasion mass loss was not a function of 

concrete density when tested for mixtures placed within the allowed variability. The ASTM 

C944 surface abrasion method was able to distinguish differences between the various curing 

regimes.  

Recommendations for Future Research 

While the field of pervious concrete is expanding rapidly, there is not a consensus of 

properties or testing methods. The ASTM and ACI committees are just beginning to address 

the needs for laboratory and field placement, testing methods, and quality control procedures. 

The most important area for future research is the development and verification of methods; 

to place samples in the laboratory and the field, to determine fresh concrete workability, to 

verify consistency, and to verify in-place engineering properties. Once standard test methods 

are in place then comparisons can accurately be made between placement methods and 

mixture designs. The workability test presented in this dissertation now allows 

characterization of previously unknown properties. Mixtures can now be designed and tested 

to meet specific workability criteria using known material inputs. Now that workability can 

be measured other quality control test methods can be developed. 

While there are standard methods to proportion conventional concrete, there are none 

for pervious concrete. To evolve the technology, a method of standard mixture proportioning 

must be determined that allows the common user to create successful mixture designs 

optimized for local materials and conditions. A greater number of producers with the ability 

to create site-specific mixture designs will improve competition and overall quality. 

Mixture proportions designed in the laboratory may be strong and durable under ideal 

conditions. In the field rarely does the fresh behavior of a mixture resemble that from the 

laboratory. Consequently, the ultimate performance of a pavement is controlled by the 

placement techniques of the contractors and actions taken by the owner/agency and very little 

by the design engineer. Education of the contractors will lead to greater care taken during the 

crucial placement period and accurately describing expectations and required maintenance to 

owners will help prevent unnecessary failures. An operations and maintenance manual 
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should be assembled for pervious concrete pavements to help determine required 

maintenance both for cleaning the surface and winter operations. 

Construction of pervious concrete is currently very labor intensive with a small 

degree of mechanization. Creating mixtures that are placeable using current construction 

technology or developing construction equipment for pervious concrete will reduce 

construction costs and improve consistency. Once construction of pervious concrete becomes 

a standardized and more common process, quality and durability will increase. As pervious 

concrete becomes a common standardized material it will further become a staple of 

stormwater management techniques. 

The failure of high strength pervious concrete occurs at the paste to aggregate bond 

interface. Increasing the bonding characteristics at the interfacial transition zone (ITZ) will 

improve strength and durability. Nanotechnology can modify very small-scale material 

properties to improve large-scale behavior. It has the potential to significantly increase the 

tensile strength of the cement paste which is the weakest fraction in all concrete, but 

especially in pervious concrete. Nano-modified cementitious materials show the greatest 

potential of improving ITZ characteristics in conventional concrete and may prove even more 

beneficial for use in pervious concrete. By controlling the nanoscale behavior, macrolevel 

properties can be improved. 

While the focus of pervious concrete durability has primarily been freeze-thaw 

related and as pavements age, the potential for other durability related distresses must be 

investigated. A specific distress of concern is alkali-silica reaction (ASR), in which certain 

aggregate types react with excess calcium hydroxide in the pavement to form a gel that can 

imbibe moisture and swell. ASR can be minimized or prevented by eliminating moisture or 

reducing the paste permeability. Since pervious concrete is designed to infiltrate water and 

the thin paste layer becomes critically saturated quickly, ASR may occur more severely in 

pervious concrete than even in conventional pavement. Varying levels of ASR reactivity and 

mitigation techniques should be investigated to determine if reactivity criteria should be 

established for aggregate used in pervious concrete. 

As infrastructure ages, maintenance must be performed to sustain serviceability. 

While a large number of pervious installations exist, no repair methods for restoring 
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serviceability of these pavements exist. If a pervious pavement fails it is often completely 

removed and replaced, unfortunately the last resort for traditional pavements. Other methods 

of serviceability need to be explored including milling to remove poorly bonded particles, 

thin bonded overlays to stabilize raveling surfaces, combination of milling and resurfacing, 

and solutions to manage localized distresses. If repair methods are developed, then localized 

distresses can be remedied more cost effectively than full replacement.  

Many preliminary questions have been answered. Only by continuing research and by 

identifying the most important areas for future research will the benefits be fully realized. 

Pervious concrete technology is becoming an essential tool for environmental sustainability 

and will be even more so in the future.  
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